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1 INTRODUCTION 

The purpose of a Maia program is to apply stimulus to an HDL module, to read data back from that 
module, and to determine whether or not that data has the expected value. The HDL module ('Device 
Under Test', or DUT) is not part of the Maia program, and is written in a language such as VHDL or 
Verilog. Maia generates a testbench for the DUT; the generated testbench must then be executed on 
an HDL simulator. 

Maia requires a DUT definition in order to communicate with the HDL code. This definition is the DUT 
Section, which is described in chapter 8.  

Maia communicates with the DUT by using drive statements, or 'test vectors', which are described in 
chapter 9, or by direct access to DUT signals. Drive statements automate the process of applying timed 
stimulus to the DUT, and checking the DUT outputs. 

A drive statement evaluates a set of expressions which are used to drive the DUT inputs, and compares 
the DUT outputs against another set of expressions. Drive statements may be executed within various 
control flow constructs, to allow the creation of reactive testbenches. These facilities are provided by a 
simple imperative control language, which is described in chapters 2 through 7. These facilities are 
similar, and in many cases identical, to those provided by C and related languages. 

1.1 Program structure 

A program may be written in one of two forms. In the first, a single DUT definition is required, and the 
remainder of the program is made up of a list of drive statements, which are executed sequentially. No 
other statements are allowed. This form (testvector-program) is suitable only for simple tests. 

In the second form (procedural-program), a program is composed of at least one function (the 

program entry point, which must be named main). There may optionally be a single DUT definition, 

and additional functions and declarations. In this form, the drive statements are executed as part of the 
normal program flow, inside a function.  

The two examples below are complete examples of a testbench for a two-bit counter with a 
synchronous reset, coded in these two styles. The first is a test vector program, and tests the DUT by 
applying directives and constants to the DUT inputs, and comparing the DUT outputs against the 
expected values: 

DUT { 

 module counter(input CLK, RST, output [1:0] Q) 

 create_clock CLK 

 [CLK, RST] -> [Q] 

} 

[.C, 1] -> [0]       // sync reset 

[.C, 0] -> [1] 

[.C, 0] -> [2]  

[.C, 0] -> [3]  

[.C, 0] -> [0]       // roll-over 

Example 1 
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The second example is the procedural equivalent of the test vector program. In this form, the DUT may 
be driven with and tested against arbitrary expressions, and drive statements can be enclosed in 
control and looping constructs: 

DUT { 

 module counter(input CLK, RST, output [1:0] Q) 

 create_clock CLK 

 [CLK, RST] -> [Q] 

} 

 

void main() { 

   [.C, 1] -> [0];    // sync reset 

 

   bit2 q = 1;      // q is a 2-bit integer, initialised to 1 

   do 

      [.C, 0] -> [q];   // count, with roll-over 

   while(q++); 

} 

Example 2 

Both programs execute 5 drive statements, and produce a log file entry stating that all 5 vectors have 
passed (assuming, of course, that the counter module has been correctly implemented): 

(Log) (50 ns) 5 vectors executed (5 passes, 0 fails) 

 

Syntax 

maia-program : 

 testvector-program 

 procedural-program 

 

testvector-program : tp-section-list 

 

tp-section-list : 

 tp-section 

 tp-section-list tp-section 

 

tp-section : 

 DUT-definition 

 labelopt vfile-drive-statement semicolonopt 

 

semicolon : ; 

 

procedural-program : external-declaration-list 

 

external-declaration-list: 

 external-declaration 

 external-declaration-list external-declaration 

 

external-declaration : 

 DUT-definition 

 function-definition 

 declaration 

  foreign-function-decl 
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1.2 Syntax definition 

The language grammar is presented in a simplified form throughout the text. The grammar is not 
exhaustive, and is not sufficient to construct a parser. Its purpose is merely to illustrate correct syntax, 
where the grammar is more concise or more complete than a textual description. 

Terminals which are presented in a typewriter style should be entered literally. Note that terminals 

are not necessarily keywords (2.8); the ones that are not keywords may also appear as user-defined 
names, if they have the appropriate form for a name. 

A number of the base operators (those shaded in Table 16) may optionally be signed and sized (4.2), 
or may have an alternative textual name (4.5.2). These alternatives are not listed in the grammar. In 
this production, for example: 

shift-expression : 

   ... 

   shift-expression >> additive-expression 

The >> operator is equivalent to the following set of right-shift operators: 

a >>     b;             // 1: unsigned (logical) implicitly-sized Right Shift 

a >>#    b;             // 2: signed(arithmetic) implicitly-sized RS 

a >>$n   b;             // 3: unsigned n-bit RS 

a >>#$n  b;             // 4: signed n-bit RS 

a .SRL   b;             // 5: same as 1 

a .SRA   b;             // 6: same as 2 

a .SRL$n b;             // 7: same as 3 

a .SRA$n b;             // 8: same as 4 

Example 3 

The $n form is used to represent any valid operator size. n must be greater than 0, and less than or 

equal to a compiler-determined maximum, which is at least 224. 

bitn and varn represent a bit or var type mark which is optionally sized. If n is present, it must be 

greater than 0, and less than or equal to a compiler-determined maximum, which is at least 224. 

1.2.1 Regular expressions 

A number of productions are instead presented as regular expressions, for simplicity. In this case, the 
production name is followed by ::, rather than :. The definition of a string, for example, is given as: 

string :: "[^"\n]*" 

A string is therefore composed of a double quote character, followed by zero or more characters which 

are not a double quote or a newline, followed by a second double-quote character. 

A regular expression may also refer to a production, which is enclosed in braces { and }: 

macro-name-lparen :: {pp-identifier}( 

in this case, a macro-name-lparen is a pp_identifier which is immediately followed by a ( character, 
with no intervening whitespace. The concept of "no intervening whitespace" cannot be represented in 
the regular (BNF-based) productions; the tokens in these productions may be separated by arbitrary 
line terminators and whitespace. 
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1.2.2 Line termination and whitespace 

The language allows a number of UTF-8 code points to represent line terminators and whitespace. 

However, the preprocessor converts all line terminators to \n (LF, U+000A)1, and all whitespace (with 

the exception of HT) to a space character (SP, U+0020)2. On completion of pre-processing, all line 
terminator and whitespace code points will appear as either LF (U+000A), SP (U+0020), or HT 
(U+0009). Any reference to \n, "newline", or "whitespace", outside the context of the preprocessor (in 

other words, any reference outside chapter 12), refers to the preprocessor output. 

1.3 The preprocessor 

The translation of a source file is carried out in two distinct stages. In the first, a preprocessor carries 
out a number of simple textual conversions on the source file. The preprocessor output is then used as 
input to the second stage of translation. This second stage is conventionally known as "compilation". 

The preprocessor defines a Macro Processing Language, or MPL. The MPL provides a number of 
facilities, including the creation of macros with the #define directive (which allows an identifier to be 

replaced by an arbitrary sequence of characters), and the inclusion of a source file inside another 
source file, with the #include directive. 

The operation of the preprocessor is logically distinct from the operation of the compiler, and is 
described in chapter 12. The preprocessor grammar is presented in the same form as the compiler 
grammar (1.2), but the two grammars are distinct. The grammars have a common definition of 
identifiers and constants, but do not otherwise reference each other. The use of the preprocessor is 
optional (12.1). However, the preprocessor provides a number of facilities beyond the MPL itself 
(including the checking of UTF-8 input), and the compiler is unlikely to be able to translate programs 
which have not been through the pre-processing stage. 

 

1 LF (Linefeed) is also variously known as "newline" and "NL". \n is an escape sequence which represents LF; see 2.6.1.  

2 See 12.2.3 and 12.2.4. 
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2 LEXICAL CONVENTIONS 

2.1 File structure 

A program must be compiled as a single unit. The name of the top-level source file is, by convention, 
given a .tv extension. Source files may use #include directives (12.3.2) to allow arbitrary file 

inclusion. 

2.2 Character set 

The source character set is UTF-81. Source files may optionally be preceded by a 3-byte byte order 
mark (BOM2); the BOM is ignored if it is present. 

All invalid byte sequences are rejected as errors, with the exception that the two-byte sequence 0xC0, 
0x80 is treated as a null character (U+0000)3. In particular, CESU-8 encodings are not supported. 

2.2.1 Line terminators and whitespace 

The Unicode code points listed in 12.2.3 are recognised as line terminators; all line terminators are 
converted to a single LF character (U+000A) during pre-processing. The code points listed in 12.2.4 are 
recognised as whitespace. These code points, with the exception of HT (U+0009), are converted to a 
single SP character (U+0020) during pre-processing. On completion of pre-processing, all line 
terminator and whitespace characters in the source will appear as either LF, SP, or HT. 

Maia is a "free-form" language, in the sense that line terminators and whitespace in the source are not 
generally significant, and are normally present simply for readability. A number of exceptions are listed 
below (the ‘for all’ keyword, for example, cannot be spelt as ‘forall’). Another exception occurs 

when two adjacent textual tokens must be parsed as separate identifiers or keywords. In this case, 
they must be separated by line terminators or whitespace: 

// function 'foo': 

real2 foo(real2 x) { return x +  / 2; } 
 

real2 foo1 ( real2 

x ) {return x+/2;}      // function 'foo1' is identical to 'foo' 

 

real2foo2(real2 x){return x+/2;} // error: 'real2foo2' is a single identifier 

real2 foo3(real2 x){returnx+/2;} // error: tokenised as (returnx)(+)()(/)(2) 

Example 4 

 

1 UTF-8 is a Unicode multibyte character encoding. Characters which are not part of the ASCII subset (U+0000 through 
U+007F) are represented by a multi-byte sequence, with a maximum length of 4 bytes. UTF-8 is backwards-compatible with 
ASCII, and any source file which is valid ASCII is also valid UTF-8. 

2  Some Windows programs may add the three-byte sequence 0xEF, 0xBB, 0xBF to the start of any file saved as UTF-8. This 
is the UTF-8 encoding of the Unicode byte order mark, although byte order is not relevant to UTF-8. 

3 This exception is generally known as ‘modified UTF-8’. 
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2.3 Comments 

The // characters introduce a line comment. The compiler ignores everything after these characters, 

up to the end of the current line.  

Comments may also be introduced by the /* characters, and terminated by the */ characters. This 

second form has the advantage that the comment may be spread over multiple lines, and is known as a 
block comment. These comments do not nest, and cannot be inserted within strings. 

Some examples of comments are: 

bit128 foo;   // this is a line comment 

/* this is a 

 * multi-line block comment */ 

2.4 Statement termination 

Statements within functions are terminated by a semicolon. 

Within a function, braces { and } are used to group declarations and statements into a compound 

statement, which is syntactically equivalent to a single statement. There is no terminating semicolon 
after the closing brace of a compound statement.  

Statements within a DUT section may optionally be terminated by a semicolon, if desired. External drive 
statements in a testvector-program may similarly be terminated with a semicolon, if desired; the 
termination is not required in either case. 

2.5 Identifiers 

An identifier may be a simple identifier or an extended identifier.  

A simple identifier may contain a set of alphabetic characters. The alphabetic characters are defined as 
a through z, A through Z, and all multibyte UTF-8 characters, with the exception of the multibyte line 

terminators (12.2.3), and the multibyte whitespace characters (12.2.4). The alphabetic characters are 
defined below as ident-alpha. 

Legal simple identifiers consist of a combination of the alphabetic characters, the decimal digits 0 to 9, 

and underscore (_, U+005F). User-defined simple identifiers must start with an alphabetic character, 

and should not be the same as a keyword (2.8). 

An extended identifier must be enclosed in \ (U+005C, Reverse Solidus) characters. The identifier may 
contain any UTF-8 characters which are not line terminators, but must not start with an underscore. 

All identifiers which start with an underscore are reserved. Some of these reserved names may be 
legally used, and have predefined meanings, which are listed in 2.9 below. Identifiers may contain any 
number of characters up to a compiler-determined maximum, which is at least 212. 

This example shows the usage of extended identifiers: 
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void main() { 

   int \switch\ = 1;                      // keywords Ok 

   int \sw 2\   = 2;                      // spaces Ok 

// int \_foo\   = 3;                      // illegal: leading '_' 

 

   // prints "\switch\ is 1; \sw 2\ is 2": 

   report("\\switch\\ is %d; \\sw 2\\ is %d\n", \switch\, \sw 2\); 

} 

Example 5 

Syntax 

simple_identifier ::   [{ident-alpha}_][{ident_alpha}_0-9]* 

extended_identifier :: \\[^\n]+\\ 

ident-alpha :: 

   [U+0061-U+007A] | [U+0041-U+005A] |  

   [U+0080-U+0084] | [U+0086-U+2027] | [U+202A-U+10FFFF] 

identifier : 

   simple_identifier 

   extended_identifier 

2.6 Strings 

Strings are arbitrary character sequences which are enclosed in double quotation marks ("). Strings 

cannot be continued onto a new line; it is an error if a single line of input contains an unterminated 
string. Within a function, adjacent strings are automatically concatenated, even across line boundaries. 
However, adjacent strings are never concatenated within a DUT section. 

A string does not have a value, and may not be manipulated in an expression. 

2.6.1 Escape sequences 

A number of characters may be represented in a string using an escape sequence, consisting of a 
backslash (\, U+005C) followed by one or more characters. Escape sequences are replaced by the 

single character that they represent during parsing. An escape sequence may be a simple-escape-
sequence, an octal-escape-sequence, or a hexadecimal-escape-sequence: 

escape_sequence : 

   simple-escape-sequence 

   octal-escape-sequence 

   hexadecimal-escape-sequence 

octal-escape-sequence : 

   \ octal-digit 

   \ octal-digit octal-digit 

   \ octal-digit octal-digit octal-digit 

hexadecimal-escape-sequence : 

   \x hexadecimal-digit 

   hexadecimal-escape-sequence hexadecimal-digit 

octal-digit :: [0-9] 

hexadecimal-digit :: [0-9,a-f,A-F] 
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The simple escape sequences are listed in Table 1 below. An octal escape sequence is composed of a 
maximal-length sequence of octal digits (1, 2, or 3 digits), while a hexadecimal escape sequence is 
composed of a maximal-length sequence of hexadecimal digits (1 or 2 digits). 

Newline LF (NL) \n audible alert BEL \a 

Horizontal tab HT \t backslash \ \\ 

vertical tab VT \v question mark ? \? 

Backspace BS \b single quote ' \' 

carriage return CR \r double quote " \" 

Formfeed FF \f    

Table 1: Simple escape sequences 

Syntax 

string :: 

   "[^"\n]*" 

2.7 Constants 

Constants may represent integer, floating-point, or boolean values. 

Integer constants can be specified as either a Cinteger, or a Vinteger. the Cinteger is based on C 
integer constants, while the Vinteger is based on Verilog integer constants. Cintegers are unsized 2-
value integers (in other words, each bit can take on one of only 2 values; 0 or 1). The Vinteger is an 

optionally-sized 4-value integer (each bit can take on one of the 4 values 0, 1, X, or Z). 

Floating-point constants have the same form as C99 floating constants1. 

When used in an expression, a constant may be considered to be replaced by a temporary object, of a 
bit, var, or bool type, with the value of the constant. If an integer constant contains no metavalues, 

then this object is a bit; it is otherwise a var. For floating constants, this object is a bit (floating 

constants may not contain metavalues); for boolean constants, it is a bool. 

A leading minus sign, if it is present, is not part of the constant; it is instead interpreted as a unary 
negation operator. 

Syntax 

constant : 

   cinteger-constant 

   vinteger-constant 

   floating-constant 

   boolean-constant 

 

1 ISO/IEC 9899:1999 (E), §6.4.4.2 
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2.7.1 Cinteger 

Cintegers are specified in a C-like form, with the addition that 0b and 0B prefixes may be used to 

specify binary data. A leading 0x or 0X specifies hexadecimal, while a leading zero otherwise specifies 

octal. Underscores may also be inserted arbitrarily into the constant to improve readability, although 
not as the first character, and not inside the base specifier. 

Syntax 

cinteger-binary  ::      0[bB][01_]+ 

cinteger-octal ::     0[0-7_]* 

cinteger-decimal ::    [1-9][0-9_]* 

cinteger-hexadecimal ::  0[xX][a-fA-F0-9_]+ 

 

cinteger-constant : 

   cinteger-binary 

   cingteger-octal 

   cinteger-decimal 

   cinteger-hexadecimal 

In other words, a Cinteger may be one of: 

1. A binary integer, which is prefixed by either 0b or 0B, and which is followed by one or more 

characters in the range 0 to 1; 

2. An octal integer, which starts with 0, optionally followed by one or more characters in the 

range 0 to 7; 

3. A decimal integer, which starts with a character in the range 1 to 9, optionally followed by 

one or more characters in the range 0 to 9; 

4. A hexadecimal integer, which is prefixed by either 0x or 0X, followed by one or more case-

insensitive characters in the range 0 to 9, or A to F. 

These constants may not include metadata (unknown and high-impedance bits), and are scanned to 
the number of bits set by the _DefaultWordSize pragma (which defaults to 32). An overflow is 

reported if the constant cannot be represented in this many bits. 

Some examples of Cinteger constants are: 

bit64 i;          // a 64-bit two-state variable 

i = 0;            // octal 0 

i = 0b1010;          // binary, equivalent to decimal 10 

i = 012;           // octal, equivalent to decimal 10 

i = 10;           // decimal 10 

i = 0x000a;         // hex, equivalent to decimal 10 

i = 0x_ffff_ffff_ffff_ffff_;  // arbitrary underscores (_DefaultWordSize >= 64) 

i = _0xffff_ffff;      // error:  leading '_' 

i = 019;          // error: decimal integers may not start with 0 

Example 6 
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2.7.2 Vinteger 

Vintegers are specified in a Verilog-like form. This allows metadata to be entered, and also allows 

constants of arbitrary width to be specified. 

Syntax 

size-prefix ::  [0-9]*['`] 

vh-digit ::   [xXzZ?0-9a-fA-F] 

vb-base ::   [bB] 

vo-base ::   [oO] 

vd-base ::   [dD] 

vh-base ::   [hH] 

 

vinteger-constant :: 

 {size-prefix}({vb-base}|{vo-base}|{vd-base}|{vh-base}){vh-digit}({vh-digit}|_)* 

In other words, a Vinteger constant is composed of: 

• a mandatory size prefix, which is either (a) an unaccompanied prefix character for an unsized 
Vinteger, or (b) one or more decimal integers followed by a prefix character, for a sized 
Vinteger; followed by 

• a mandatory base specifier, which must be one of binary (b or B), octal (o or O), decimal (d or 

D), or hex (h or H); followed by 

• a single vh_digit; optionally followed by 

• zero or more characters which are either a vh_digit, or an underscore character, which may be 

used arbitrarily to improve readability. 

The prefix character may be either an apostrophe ' (U+0027), or a grave accent ` (U+0060)1. 

vh_digit is shown as including the full case-insensitive hex character set, for simplicity. The 

characters used must, however, be valid for the specified base. The vh_digit may also be specified 

(in any base) as x or X for an unknown value, or z, Z, or ? for a high-impedance value; these 

characters are the 'metavalues'2. 

A metavalue character specifies 1 bit for the binary base, 3 bits for octal, and 4 bits for hex. The 

integer 4'hx, for example, is equivalent to 4'bxxxx. Metavalues are illegal in decimal numbers, unless 

the entire integer is composed of a single metavalue. In this case, every bit of the integer is set to the 
metavalue. The integer 32'dx, for example, contains 32 unknown bits.  

Vintegers must not contain any whitespace; the entire constant is one token. 

These integers are essentially identical to Verilog "based constants". There are, however, a number of 

differences between Vintegers and Verilog based constants: 

 

1 The apostrophe character is used for Verilog compatibility. However, this character may cause difficulties with tools for C-like 
languages (such as editors), and the grave accent (or ‘back-tick’) may be used as an alternative. 

2 When scanning a Vinteger '?' is accepted as an alternative to z or Z for Verilog compatibility. However, the use of ? should 

be avoided if possible; it is not valid elsewhere (when initialising a kmap, for example) as a metavalue. 
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• there must be no whitespace anywhere in the constant. "5 'd 4" is interpeted in Verilog as 

0b00100, but is illegal in Maia; it should instead be specified as "5'd4" 

• the 's' designator is illegal (as in Verilog-1995) 

• if a size prefix is present and the constant cannot be represented in the specified size, an 
overflow error is reported (overflow is not an error in Verilog) 

• if a size prefix is not present, the constant is scanned to the number of bits given by 
_DefaultWordSize, and an overflow error is reported if it cannot be represented in this 

many bits 

• if there is not enough data in the constant to fill the specified number of bits, then the data is 
always padded with 0 bits to the left; x and z padding is never used. The one exception is 

the case of the single-metavalue decimal Vinteger, as noted above.  

Some examples of Vinteger constants are: 

#pragma _DefaultWordSize 24  // scan unsized integer constants to 24 bits 

var5 i;      // a 5-bit four-state variable 

i =  'b1010;   // 24-bit decimal 10, truncated to 5 bits on assignment 

i =  4'B00_1010;  // 4-bit decimal 10, no overflow 

i =  4'B01_1010;  // cannot scan to 4 bits; overflow error 

i =  'o12;    // 24-bit decimal 10, truncated on assignment 

i =  'd10;    // 24-bit decimal 10, truncated on assignment 

i =  4'D10;    // 4-bit decimal 10, 0-extended on assignment 

i =# 4'D10;    // 4-bit decimal 10, sign-extended to 5'b11010 on assignment  

i =  'dz;     // 24 z bits, truncated to 5 bits on assignment 

i =  'h1x;    //  i == 5'b1xxxx  

i =  4'h1x;    // overflow error 

Example 7 

2.7.3 Floating constants 

Maia floating constants are lexically identical to C99 floating constants. A float constant is composed of 
a significand part, followed by an optional exponent part, and an optional suffix. The suffix specifies the 
precision of the constant; it may be either f or F for single-precision, or l or L for extended double-

precision. The constant is double-precision if the suffix is omitted.  

The Verilog code generator supports only double-precision constants (A4.7.1). However, any 
expressions which can be statically evaluated by the compiler may use any, or all, of the floating-point 
precisions. 

The constant is hexadecimal if it is preceded by 0x or 0X; it is otherwise decimal. For a hexadecimal 

constant, the significand is interpreted as a hexadecimal number; for a decimal constant, the 
significand is interpreted as a decimal number. 

For a hexadecimal constant, the exponent is interpreted as a decimal number, which specifies the 
power of two by which the significand is scaled. For a decimal constant, the exponent is interpreted as 
a decimal number, which specifies the power of ten by which the significand is scaled. 

The components of the significand part may include a digit sequence representing the whole-number 
part, followed by a period (.), followed by a digit sequence representing the fraction part. At least one 

of the whole-number part and the fraction part must be present. 



  

 Page 19/172 

LRM 2.7 © 2008-2021 Maia EDA 

 

The components of the exponent part are an e or E (for a decimal constant), or p or P (for a 

hexadecimal constant), followed by an exponent consisting of an optionally signed decimal digit 
sequence.  

For decimal floating constants, either the period or the exponent part has to be present. The exponent 

is always required for hexadecimal floating constants. 

Syntax 

floating-constant : 

 dec-floating-constant 

 hex-floating-constant 

 

dec-floating-constant : 

 dec-fractional-constant exponent10-partopt floating-suffixopt 

 dec-digit-sequence      exponent10-part   floating-suffixopt 

 

hex-floating-constant : 

 hex-prefix hex-fractional-constant exponent2-part floating-suffixopt 

 hex-prefix hex-digit-sequence      exponent2-part floating-suffixopt 

 

dec-fractional-constant : 

 dec-digit-sequenceopt . dec-digit-sequence 

 dec-digit-sequence   . 

 

hex-fractional-constant : 

 hex-digit-sequenceopt . hex-digit-sequence 

 hex-digit-sequence   . 

 

exponent10-part : 

 e signopt dec-digit-sequence 

 E signopt dec-digit-sequence 

 

exponent2-part : 

 p signopt dec-digit-sequence 

 P signopt dec-digit-sequence 

 

dec-digit-sequence : 

 dec-digit 

 dec-digit-sequence digit 

 

hex-digit-sequence : 

 hex-digit 

 hex-digit-sequence hex-digit 

 

sign :: + | - 

 

hex-prefix :: 0x | 0X 

 

floating-suffix :: f | F | l | L 

Examples 

Some examples of floating-point constants are given below; the comments include the report statement 
output. These are all double-precision constants. Single- and double-extended constants are specified 
identically, but with a trailing case-insensitive F or L, respectively. 
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report("'%5.2f'\n", 3.14159);    // ' 3.14' 

report("'%5.2f'\n", 3.14159E0);  // ' 3.14' 

report("'%5.2f'\n", 31.4159e-1);  // ' 3.14' 

report("'%5.2f'\n", .314159e+1);  // ' 3.14' 

report("'%5.2f'\n", 1.);         // ' 1.00' 

report("'%5.2f'\n", 1e0);     // ' 1.00' 

report("'%5.2f'\n", .1E1);    // ' 1.00' 

report("'%5.2f'\n", .5);     // ' 0.50' 

report("'%5.2f'\n", 0x0.8p0);   // ' 0.50' (0000.1000) 

report("%5.2f'\n", 0x0.8p1);    // ' 1.00' (ie. 0000.1000 x 2^1) 

report("%5.2f'\n", 0x0.4p2);    // ' 1.00' (ie. 0000.0100 x 2^2) 

report("%5.2f'\n", 0x0.3p+4);   // ' 3.00' (ie. 0000.0011 x 2^4) 

Example 8 

2.7.4 Boolean constants 

The literals true and false may be used wherever a value of a Boolean type is expected.  

Note that care must be taken when displaying a boolean value with report.  The %d and %i 

conversion specifications treat their argument as a signed integer quantity, and the displayed output 
may not be as expected1. Booleans should be printed with an unsigned conversion (%b, %o, %u, %x, or 

%X), or with the boolean specification (%l). %l produces the output false if the corresponding 

expression is false, and true otherwise. 

Syntax 

boolean-constant :: true | false 

2.8 Keywords 

The language keywords are listed in the tables below. These keywords may not be used as simple 
identifiers. The tables are separated for convenience; all the keywords are reserved in all parts of a 
program. Note that var[0-9]*, kmap[0-9]*, and bit[0-9]* are regular expressions, and not 

literal tokens. In other words, var itself is a keyword, and any token which is composed of var 

immediately followed by one or more decimal integers is also a keyword. The tokens of multi-word 
keywords (when all and for all) must be separated by whitespace. 

Table 2 lists the DUT-related keywords. Note that name, period, pipeline, and waveform are 

listed, but have no significance unless they are immediately preceded by a hyphen character. 

create_clock create_enable DUT inout input 

macromodule module -name negedge output 

-period -pipeline posedge signal timescale 

-waveform     

Table 2: Keywords 1 

The type-related keywords are listed in Table 3 below. 

 

1 Most Verilog simulators will display a signed 1'b1 as '-1', although at least one displays it as '0'. 
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bit[0-9]* bool int kmap[0-9]* real1 

real2 real3 stream struct ubit 

uvar var[0-9]*    

Table 3: Keywords 2 

Table 4 lists the remaining keywords. true and false are listed as keywords for simplicity, although 

they are technically boolean literals. 

and assert break case continue 

default do else exec exit 

false for for all foreign if 

or report return static switch 

trigger true void wait when 

when all while    

Table 4: Keywords 3 

Table 5 list tokens which are reserved for future use as keywords; they may not be used as identifiers. 

new delete enum function typedef 

ref in out goto fork 

join extern alias   

Table 5: Reserved words 

Table 6 lists multi-character tokens which must not include whitespace. There are also a number of 
multi-character operator tokens (*=, for example) which may not include whitespace; these are listed 

in Table 16. The meta, msb, size and offset operators must be immediately preceded by either an 

apostrophe character, or a grave accent (backtick) character, with no intervening whitespace; the table 
lists only the apostrophe version, for simplicity. 

@( :: -> 'meta 'msb 

'size 'offset 'last   

Table 6: Additional lexer tokens 
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2.9 Predefined identifiers 

A number of identifiers are predefined, and are listed in Table 7 below. 

Name R/W Scope Function 

_errorCount RW global The global error counter; automatically incremented by assertion 
failures.  The simulation will terminate when _errorCount 

reaches the value set  by mtv's -rte switch (A4.5).  

_errorCount may also be incremented by failures in runtime type 

checking (11). Note that _errorCount is unrelated to DUT 

failures (see _failCount). 

_assertCount RO global Total number of assertions executed; may be used with 
_errorCount for testing 

_version RO global The Maia version, as three integers packed into 32 bits. The top 16 
bits encode the current version. The next 12 bits encode the 
release year, and the bottom 4 bits encode the release month. 

_timeNow RO global The current simulation time, as a bit64. The units are the timescale 
units defined in the DUT section, which default to nanoseconds. 

_vectorCount R/W global The total number of DUT vectors (drive statements) executed 

_passCount R/W global The DUT pass counter 

_failCount R/W global The DUT fail counter. _vectorCount, _passCount, and 

_failCount are automatically logged and displayed at the end of 

a simulation. Note that these variables are writeable, to allow for 
manual testing. 

result R/W function The return value from a function: see Section 7. 

Table 7: Predefined variable names 
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3 CONCEPTS 

3.1 Type checking 

The syntactic and semantic correctness of a program is determined through a combination of static and 
dynamic error (or type) checking. Static checking is carried out during compilation; a failure at this 
stage is reported as a syntax error. However, various classes of error cannot be detected during 
compilation, and must be detected at runtime. Example 9 contains two static errors and one dynamic 
error (in practice, however, errors which could be determined statically may instead be reported at 
runtime): 

void test(void) { 

  var12 x[3];    // an array of three 12-bit quantities 

  x[3] = 0;     // static error: only x[0], x[1], and x[2] are valid 

  x[2].(15:12) = 0; // static error: x[2] only has 12 bits 

  x[indx()] = 0;   // dynamic error: '3' is not a valid index 

} 

 

int indx(void) { return 3; } 

Example 9 

Dynamic error checking is described in (11) below. 

The level of static checking which is carried out is determined by the user, by setting the 

_StrictChecking pragma. This has three possible values (0, 1, and 2), where the level corresponds 

to the level of 'strictness' of the checking. Level 0 defines a minimal level of 'weak' checking, which is 
generally associated with scripting languages. The default level is 1, which gives a level of checking 
which is approximately equivalent to that found in C and similar languages. A program which compiles 
without error at a given checking level is guaranteed to compile without error at any lower level. 

It is generally possible to write more compact (and possibly more understandable) code with level 0. 
However, this disables a number of checks which might otherwise identify erroneous code, and should 
generally be considered to be suitable only for simple, and relatively short, tests.  

The type checking level can be set only with the _StrictChecking and _Implicits pragmas 

(12.7). These pragmas are program-wide, and should appear once in the source code, before any 
functions are analysed. There are no corresponding compiler switches to set the level. The intention is 
to ensure that a given program will always compile with the same level of checking, irrespective of the 
manner in which it is compiled. 

The level-specific checks and features are listed in Table 8 below, together with the corresponding 
_StrictChecking level: 
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Level: 0 1 2 

Implicit variables (3.1.1) Y N N 

Default type for function formal (3.1.2) Y N N 

Default type for function return (3.1.3) Y N N 

Port size checking (3.1.4) N Y Y 

Extended boolean checking (3.1.5) N N Y 

Separate boolean type (3.1.5) N N Y 

Table 8: level-specific checking 

3.1.1 Implicit variables 

Level 0 allows the use of implicitly-declared variables. These variables do not need to be declared, and 
are instead created automatically when an undeclared variable is first assigned to in the code. An error 
will be reported if an undeclared variable is read before it is written to. These variables are created with 
type var; in other words, they are 4-state data objects, with a default size1. The object must be scalar; 

implicit arrays will not be created. 

#pragma _StrictChecking 0 

main() { 

  for(i=0; i<4; i++) 

    report("i is %d\n");  // Ok 

  report(j is %d\n", j);  // error; 'j' has not been written to 

} 

Example 10 

Implicit variables can be enabled or disabled independently of the checking level by using the 

_Implicits pragma. If this pragma is used, the requested action takes precedence over the action 

implied from the _StrictChecking level. #pragma _Implicits 0 disables the use of implicits, 

while #pragma _Implicits 1 enables implicits. 

Implicit variables which are created in a function have function scope, rather than block scope. The 
scope of the variable starts at the point at which it is first assigned to, and ends at the end of the 
associated function. 

3.1.2 Function formal types 

If a function formal parameter has no type specifier in level 0, a type of uvar (an unconstrained var) 

will be assumed. A syntax error is reported at any higher level. 

 

1 If implicits are enabled, creation of a var object creates an object with a size given by _DefaultWordSize.  When implicits 

are not enabled, however, var is simply a synonym for var1, and an object declared as a var is a 1-bit object. 
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3.1.3 Function return types 

If a function is declared with no type specifier in level 0, a return type of uvar (an unconstrained var) 

will be assumed. A syntax error is reported at any higher level. 

3.1.4 Port size checking 

When reading from, or writing to, an object of an arithmetic type, the source expression will normally 
be extended or truncated as required, irrespective of the checking level. However, this is a potential 
source of errors when driving or reading DUT ports, and extension and truncation are therefore 
disabled for expressions which appear in drive statements, when the checking level is greater than 0. 
Note that: 

1.  When the checking level is 0, objects may be extended or truncated as required, with no 
restrictions; 

2.  When the checking level is greater than 0, extension and truncation are disabled and will result 
in a syntax error, with the exceptions noted in 3.1.4.1 below; 

3.  The exceptions of 3.1.4.1 apply only when using a drive statement. If the DUT ports are driven 
or read directly then they do not apply. 

3.1.4.1 Port size checking exceptions 

• If an unsized constant is used in a drive statement (on either the left-hand or the right-hand side) 
then that constant is not subject to port size checking, irrespective of the checking level. 

• A bitslice of an object has the same size as that object, and this can complicate the use of 
bitslices to drive DUT ports. A port may therefore be driven directly if the slice has constant 
indexes, and the slice width is the same as the port width. 

Various examples of valid and invalid drive statements are shown in Example 11 below. 

DUT { 

   module adder(input[15:0] A, B, output[15:0] C); 

   [A,B] -> [C]; 

} 

 

void main() { 

   bit32 in1 = 10; 

   bit16 in2 = 6; 

   int   x=30, y=0; 

 

   [32`d10,           in2] -> [];    // error: sized const, not 16 bits 

   [in1,              in2] -> [];    // error: in1 is 32-bit 

   [in1.(14:0),       in2] -> [];    // error: 15 bit slice 

   [in1.(15:0).(3:0), in2] -> [];    // error: 4 bit slice 

   [in1.(15:0).(x:y), in2] -> [];    // error: not constant 

   A = in1.(18:3);                   // error: 16 bit <- 32 bit 

   [in1.(18:3),       in2] -> [7];   // but this is Ok 

   [in1.(x:y).(17:2), in2] -> [8];   // Ok: 16 bits 

   ['d10,             in2] -> [16];  // Ok: unsized const 

} 

Example 11 
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3.1.5 Boolean type 

In levels 0 and 1, there is no separate boolean type, and bool is simply a synonym for bit1 (a one-bit 

two-state integer). The boolean values true and false have the values 1'b1 and 1'b0, respectively.  

Level 2 introduces a separate boolean type. In level 2, an arithmetic object may still be used wherever 
a boolean is required by the syntax, and the object will be implicitly converted to a boolean. However, 
booleans undergo some additional type checking; two boolean objects may not be added by using the 
+ operator, for example. 

 

int foo() { return 1; } 

 

while(true)         // Ok for all levels; true and false are not level-specific 

   ... 

if(foo())         // Ok for all levels 

   ... 

if(foo() != 0)      // Ok for all levels 

   ... 

 

bool x = false, y = true; 

int z = x + y;     // Ok in levels 0,1; error in level 2 

Example 12 

3.2 Declaration order 

In general, external declarations and function definitions may appear in the source code in any order. 
Local declarations, however, are treated conventionally, and must appear in the code before they are 
used. This flexibility is possible because a compiler pre-pass analyses external declarations, the DUT 
section, and all functions. 

The specific rules are listed below; some of these are simply a reformulation of the scope requirements 
of (3.3). 

1. There is no requirement for (non-foreign) functions to be declared; a function's definition also 
serves as its declaration 

2. There is no requirement that a function definition should precede any use of that function in 
the source code. The functions which make up a program may therefore appear in the source 
code in any order 

3. The DUT definition is treated in the same way as a function, and may appear anywhere that a 
function may appear 

4. There is no requirement that external variable declarations should precede any use of that 
variable in the source code 

5. There is no requirement that external type declarations should precede any use of that type in 
the source code, with the exception noted in (6) below 
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6. If an external structure declaration contains a member which is of a user-defined type (a 

stream or another structure), then that type must have already been analysed 

7. Automatic and static variables in a function must be declared before they are used. If, 
however, implicit variables (3.1.1) are enabled, and the compiler encounters a write operation 
to an unknown variable, then it will implicitly declare it to be of type var 

8. local type declarations (for structures and streams) in a function must precede any use of that 
type in the function 

9. In a function, declarations may appear at any location; it is not necessary for declarations to 
appear at the beginning of the function. 

This example program demonstrates all these requirements: 

void main() { 

  b.a.x = 10;  // 4: external variable 'b' may be used before it is declared 

  struct s2 c;  // 5: external type 'struct s2' may be used before it is declared 

  foo();    // 2: 'foo' may be called before it is defined 

} 

 

void foo() {  // 1: no declaration is required for 'foo'; this is the definition 

  struct s3 {  // 8: 'struct s3' must be declared before it is used 

    int z; 

  } c; 

 

  c.z = 20;   // 7: 'c' must be declared before it is used 

  int d = 30;  // 9: declarations may occur anywhere inside a function 

} 

 

DUT {}     // 3: the DUT defn may appear anywhere where a function may appear 

 

struct s1 { int x, y; }; 

 

struct s2 { 

  struct s1 a;  // 6: the declaration of 's1' must appear before its use here 

} b;      // 4: the declaration of 'b' may appear after its use in 'main' 

Example 13 

3.3 Scope 

An identifier can denote an object, a function, a tag or a member of a structure or stream, a label 
name, a macro name, or a macro parameter. Macro names and parameters are expanded before 
translation, and so are not considered further here. The same identifier can denote different entities at 
different points in the source code. 

An identifier that denotes a given entity is visible only within a specific region of the source code, 
known as its scope. The various entities denoted by an identifier have different scopes, or are in 
different namespaces. There are three kinds of scope: function, block, and global. 

Any identifier which is a function name or is declared outside a function has global scope. These 
identifiers include DUT port and signal names, and drive declaration label names (8.3.7). These 
identifiers are visible throughout the source code that makes up the program, with one exception. This 
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exception occurs when a structure or stream tag is used in another structure (in other words, when the 
second structure includes an instance of the first structure or stream). In this case, the first tag is 
considered to have a scope that starts at its introduction for the purposes of inclusion in any other 
structure; it is visible throughout the entire source code for any other purposes (this is the exclusion 
listed in item (6) of section 3.2). 

Every other identifier is introduced in a function parameter list, or within a function. The identifier has 
function scope if it introduces a new implicit variable (3.1.1), and otherwise has block scope. The scope 
of an implicit starts at the point at which it is first assigned to, and ends at the end of the associated 
function. The scope otherwise starts at the point of introduction and terminates at the end of the 
associated block. 

An identifier at a given scope level (the outer scope) may be hidden by the same identifier in an 
enclosed scope (the inner scope). An entity with global scope may always be accessed by using the 
global scope operator1, ::. The example below shows a number of cases where an outer scope 

identifier is hidden, and prints '4321': 

int i = 1;                   // global scope 

void main() {                // block scope level 1 

  int i = 2; 

  do {                       // block scope level 2 

    int i = 3; 

    {                        // block scope level 3 

      int i = 4; 

      report("%d", i);       // 4 

    } 

    report("%d", i);         // 3 

  } while(false); 

  report("%d", i);           // 2 

  report("%d\n", ::i);       // 1 (global scope operator) 

} 

Example 14 

3.4 Namespaces 

Under some circumstances, an identifier may potentially refer to more than one entity at a given point 
in the source code. This is possible where the surrounding syntactic context allows the use of the 
identifier to be disambiguated, and is formalised in the concept of a namespace. A namespace is 
therefore a context for an identifier. The possible namespaces are: 

• drive statement label names, which are disambiguated by the syntax of their declaration and use; 

• the tags of structures and streams, which are disambiguated by following the keywords struct 

or stream. The tags of structures and streams share the same namespace; 

• the members of structures of streams, which are disambiguated by following the . operator. Each 

structure and stream creates its own namespace; 

• all other identifiers. 

 

1 :: is not, strictly speaking, an operator, although it may be considered to be a prefix operator in most circumstances. 
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3.5 Storage duration 

An object has a storage duration that determines its lifetime. There are two storage durations: static, 
and automatic. The lifetime of an object is the portion of program execution during which storage is 
guaranteed to be reserved for it. An object exists, and retains its last-stored value, throughout its 
lifetime. 

An external object, or one declared with the static modifier, has static storage duration. Its lifetime is 

the entire execution of the program and its stored value is initialized only once, prior to program 
startup. If no initialization is specified for the object, a default initialisation  (3.6) is carried out. 

Any other object has automatic storage duration. The lifetime of such an object extends from the point 
of its declaration, until the enclosing scope terminates. If an initialisation is specified for the object, it is 
performed each time the declaration is reached in the execution of the function; otherwise, a default 
initialisation (3.6) is carried out each time the declaration is reached.  

3.6 Default initialisation 

All data and boolean objects (of both static and automatic storage duration (3.5)) which are not 

explicitly initialised are given a default initialisation. 4-state objects are initialised to all X, while 2-state 

objects are initialised to all 0. Booleans are initialised to false. 

Stream objects are always automatically initialised; the "default" initialisation can be considered to be 
the initial value of the stream. 

All objects are either data, boolean, or stream objects, or an aggregate of these basic objects. An 
aggregate is default-initialised by initialising all basic objects within the aggregate. If a basic object 
within an aggregate has no explicit initialiser, then that basic object is default-initialised. 

3.7 Types 

3.7.1 Introduction 

Every expression has a type which is known at compile time. The type of the expression determines the 
operations that can be carried out on that expression, and the values which can be stored in, or read 
from, that expression. 

At its simplest level, an expression is simply an identifier which has been declared as an object or as a 
function name. In this case, the type of the identifier determines the values which may be stored in or 
read from the object, or the values which can be returned from the function. 

There are three data types (int, bit, and var, together with a number of specialisations), which are 

appropriate for representing 'data' items. The remaining types are a boolean type (bool); a stream 

type (stream); a structure type (struct); and an array type. 

Some objects have no value, and so have no type; these objects are said to be of a void type. A 

function may be declared to be of type void when it is not required to return a value. 
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3.7.1.1 Data types 

The int, bit, and var types are intended to store numeric 'data'. int and bit represent 2-state 

(binary) data, while var represents 4-state data. Objects of these three types are collectively known as 

ivar objects. kmap, ubit, and uvar are specialisations of the bit and var types. 

kmap simplifies the handling and manipulation of data representing Karnaugh maps. kmap and var 

support a different set of operators, and so are considered to be distinct types. The terms arithmetic 
type and data type are used to make this distinction; 'arithmetic' excludes kmap, while 'data' includes it. 

ubit is an unconstrained bit, while uvar is an unconstrained var. These two specialisations are used 

to represent objects whose size is not known in advance. However, the underlying object is a bit or 

var object (albeit of an unknown size), so these specialisations do not introduce new types. 

real1, real2, and real3 are provided to simplify the handling of floating-point data. These are not 

additional types, but are simply synonyms for a bit which is correctly sized to hold IEC single, double, 

and extended double-precision data. On most systems, real1 is identical to bit32; real2 is identical 

to bit64; and real3 is identical to either bit80 or bit128. 

bool is a synonym for bit1 at levels 0 and 1 (3.1.5), and so can be considered to be a data type at 

these levels. 

3.7.1.2 Non-data types 

The structure type is a user-defined aggregate type; it is used to encapsulate a collection of objects 
which are potentially of different types (a heterogeneous collection). The array type is equivalent to the 
structure type, but encapsulates a collection of objects which are of the same type (a homogeneous 
collection). 

The stream type represents files on the host operating system, and handles file input and output 

operations. The use of a dedicated stream type allows common vector file operations to be handled 
simply, without the use of an external I/O library. 

bool is a distinct non-data type at Level 2 (3.1.5). There is no string type; the contents of a string 

cannot be manipulated. 

3.7.1.3 Data object indexing 

Data objects are always indexed in a descending fashion. The most significant bit of the object has an 
index value of one less than the size of the object, while the least significant bit has index value 0. The 
value of the most significant bit is returned by the 'msb operator: 

bit4 c = 4'b1000; 

assert(c'size == 4); 

assert(c'msb  == c.(c'size-1)); 

assert(c'msb  == c.(3:3)); 

assert(c'msb  == 1); 

Example 15 
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3.7.1.4 int properties 

The int type represents 'small' two's complement integers. int objects are signed and have a size 

which is given by the _DefaultWordSize pragma (12.7), which itself defaults to 32 bits. int is provided 

as a programmer convenience (for indexing and looping operations, for example), and is not intended 
for modelling hardware. 

3.7.1.5 bit and var properties 

bit and var objects have no properties apart from their size; they do not, for example, have "signed", 

"unsigned", "integer", or "floating-point" properties.  A bit or var data object may contain any data 

pattern, including data which can be interpreted as a floating-point number. 

When using bit and var objects, complexity is provided by operators, rather than by the type itself. 

There are, for example, different operators for signed and unsigned integer comparisons, and integer 
and floating-point addition. This behaviour reflects the structure of the electronic systems that Maia is 
intended to model and verify. In these systems, data is a secondary concern, and simply represents the 
contents of a storage location. Electronic systems are primarily concerned with the transformation of 
data, in function units. The same storage location may be connected to, for example, an unsigned 
integer comparator, a signed integer comparator, or a floating-point adder, at different times. 

Maia is therefore fundamentally different from general-purpose object-oriented languages in which data 
is the primary concern, and in which complexity is provided by layering properties on top of the data 
(in, for example, classes). 

3.7.2 Assignment compatibility 

Objects a and b are assignment-compatible if the expression a=b is allowable. In most cases, 
assignment-compatibility is commutative; in other words, if a=b is a valid expression, then so is b=a. 
Any exceptions are listed below. 

Arrays a and b are assignment-compatible if both arrays are of the same rank, each rank has the same 
bounds, and the array elements are both assignment-compatible and have the same size (3.7.12.4). 

Scalars a and b are assignment-compatible in the following circumstances: 

1.  a and b are both ivar objects 

2.  a and b are both bool objects 

3.  If _StrictChecking is less than 2, a is an ivar object and b is a bool object, and vice-versa  

4.  a and b are kmap objects with the same number of variables 

5.  a and b are struct objects where both are instances of the same structure definition 

6.  a and b are stream objects where both are instances of the same stream definition 

7.  If a is a mode 1 stream, and b is an object of an int or bit type, then the assignment a=b (but 

not b=a) is allowable 

In all other cases, a and b are not assignment-compatible. 
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3.7.3 ubit and uvar 

A 2-state data object whose size is not known in advance should be declared as a ubit. Similarly, a 4-

state data object whose size is not known in advance should be declared as a uvar. ubit and uvar 

may appear only as a function formal parameter, or as a function return type. 

When a formal parameter is of an unconstrained type, its actual size may be retrieved with the 'size 

attribute. Alternatively, a 'for all' loop will automatically loop over all values of the actual. 

When a function returns an unconstrained object, that object will be sized to whatever was returned by 
the function. Different paths through the function may return a 10-bit or a 12-bit object, for example, 
on different calls1. 

This example returns true if the unconstrained input has odd parity, and false otherwise: 

bool oddParity(ubit a) { 

   result = false; 

   for(int i = 0; i < a'size; i++) 

      result ^= a.(i); 

} 

Example 16 

This example byte reverses an arbitrary input with a width which is an integer multiple of 8 bits: 

ubit reverse(ubit data) { 

   int nbytes = data'size/8; 

   int src    = data'size-1; 

   int dst    = 7; 

 

   result = data;                 // set the return value size 

   for(int i=0; i<nbytes; i++) { 

      result.(dst:dst-7) = data.(src:src-7); 

      dst += 8; 

      src -= 8; 

   } 

} 

Example 17 

The compiler must statically determine the maximum possible size of an unconstrained formal or return 
value. There are some circumstances in which this may be difficult or impossible; this might happen, 
for example, in a circular chain of function calls in which there is a cycle of connected unconstrained 
return values and unconstrained actuals. In these circumstances it might be possible to complete sizing 
by increasing the number of sizing iterations performed by the compiler; see (A4.4). 

3.7.4 ivar operations 

int, bit and var (ivar) objects have a number of semantic similarities, which are described in this 

clause. 

 

1 The returned object is actually statically sized to the maximum size returned by any call of the function; this value may be 
found by applying the 'size attribute to the function call. In practice, the return size can almost always be considered to be 
dynamically set in the current function call.  
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3.7.4.1 Assignment compatibility 

ivar objects are assignment-compatible. When a 2-state ivar object is assigned to a 4-state ivar object 
the destination bits will have the same value as the source bits. When a 4-state ivar object is assigned 
to a 2-state ivar object any metavalue bits in the source are converted to 11. Under most 
circumstances2, an ivar object may be assigned to a narrower ivar object, in which case the source data 
is truncated. Similarly, an ivar object may be assigned to a wider ivar object, in which case the source 
data is either zero-extended, or sign-extended, depending on which assignment operator is used:  

bit3 a = 3'b101; 

bit4 b, c; 

var5 d = 5'b1xz01; 
 

b =  a;   assert(b == 4`b0101);    // the '=' operator zero-extends 

c =# a;   assert(c == 4`b1101);    // the '=#' operator sign-extends 

b =  d;   assert(b == 4`b1101);    // truncate, and convert metavals to 1 

Example 18 

3.7.4.2 Using an ivar object as a boolean 

An ivar object may be used in any context in which a boolean is expected. In this case, an all-zero 
value is equivalent to false, while any other value is equivalent to true3. 

3.7.4.3 Supported operators 

The bit and var types support all the operators listed in Table 16, with the exception of () and [] 

(which are defined only for functions and arrays), and 'offset (which is defined only for arrays, 

structures, and streams). 

The int type supports the same operators, with the exception that the sized and signed versions of 

the operators may not be used where any of the operands are of type int. The 'plain' versions of the 

operators will correctly return a signed result. 

The 'size and 'meta operators return an int and a bool, respectively, for any ivar operand. The 

remaining unary operators have a return type which is the same as the type of the operand.  

3.7.4.4 Binary operations 

If the operands of a binary operator are both of an ivar type, then: 

1. If both operands are of type var, then the operation is carried out using 4-state arithmetic or 

logic, and the result is of type var; 

2. If one operand is of type int or bit and the other is of type var, then the int or bit is 

converted to a temporary var as if by assignment, the operation is carried out using 4-state 

arithmetic or logic, and the result is of type var; 

 
1 This is consistent with a definition of 'false' as 0, and 'true' as non-zero. 

2 There is an exception if DUT port size checking is enabled; see (3.1.4). 

3 This behaviour differs from Verilog. in Verilog, an expression is 'true' if it is non-zero and does not contain metavalues, and is 
'false' otherwise. In Maia, an expression is false if it is zero, and is true otherwise. The expression 2'b1x is therefore false in 

Verilog, and true in Maia. 
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3. If both operands are of type int or bit, the operation is carried out using conventional 2-

state arithmetic or logic. If either operand is of type bit, the result is of type bit; otherwise, 

the result is of type int. 

3.7.5 int 

The int type is primarily intended for general 'software' operations which require a signed type, where 

the size of that type is not a specific concern. int is signed, and has a size given by the 

_DefaultWordSize pragma (12.7). _DefaultWordSize itself defaults to 32 bits if it has not been 

set. 

3.7.6 bit 

The bit type represents two-state data, where each bit can take on one of the values 0 or 1. The size 

of a bit object must be set explicitly, as a decimal integer suffix which immediately follows the bit 

keyword, with no intervening whitespace. The suffix may be omitted for a single-bit object (in other 
words, bit x is equivalent to bit1 x).  

bit a;   // 'a' is a one-bit two-state data object 

bit18 b;  // 'b' is an 18-bit two-state data object (indexed as 17:0) 

bit192 c;  // 'c' is a 192-bit two-state data object (indexed as 191:0) 

Example 19 

3.7.7 var 

The var type represents four-state data, where each bit can take on one of the values 0, 1, X, or Z. X 

and Z are metavalues, and represent "unknown" and "tristate", respectively, in electronic systems. The 

'meta postfix operator may be used to determine whether or not an expression contains any 

metavalues. expr'meta will return true if expr contains any metavalue bits, and false otherwise. 

var is essentially identical to bit, except that operations on var objects are carried out using 4-state 

arithmetic and logic, as defined in (3.7.7.3) through (3.7.7.6) below. 

3.7.7.1 var declaration 

var objects may be explicitly declared in exactly the same way as bit objects (3.7.6). var objects are 
additionally created in these circumstances (where 'level' is the _StrictChecking level): 

1. Any ports or signals declared in a DUT section are implicitly declared as a correctly-sized 
external var 

2. A rank-zero K-map (3.7.8) is a one-bit var (a var1) 

3. At level 0, implicitly-declared variables are created as a default-sized var (undeclared object x, 

for example, is implicitly declared as varnn x, where nn is equal to _DefaultWordSize) 

4. At level 0, a function formal parameter which does not have a type specifier is an 
unconstrained object of type var (a uvar) 

5. At level 0, a function which has no return type specifier returns an unconstrained object of 
type var (a uvar). 
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3.7.7.2 var operations 

The 4-state arithmetic and logic operations are defined in (3.7.7.3) through (3.7.7.6) below. For the 
operators which are not listed in these clauses, the 4-state behaviour is as follows: 

1. the shift and rotate operators preserve any metavalues; 

2. the logical AND and logical OR operators will convert 4-state operands into boolean values 

according to 3.7.4.2 above; 

3. the conditional operator will convert its first expression into a boolean according to 3.7.4.2 
above; 

4. an assignment to a 4-state object preserves any metavalues; 

5. the remaining operators have the same behaviour for bit and var operands. 

3.7.7.3 4-state arithmetic 

If a 4-state operand of an arithmetic operator (unary +, -, ++, and --, and binary +, -, *, /, and %) 

contains any metavalues, then the result of that operation will be all X1: 

bit3 a = 1; 

var3 b = 3'b011; 

var3 c = 3'bx11; 

assert(a + b == 3`b100); 

assert(a + c == 3`bxxx); 

Example 20 

3.7.7.4 4-state comparisons 

If a 4-state operand of a relational operator (>, >=, <, and <=) contains any metavalues, then the 

result of that operation will be false: 

bit3 a = 4; 

var3 b = 3`b011; 

var3 c = 3`bx11; 

assert(!(a < b) && !(a <= b) &&  (a > b) &&  (a>= b)); 

assert(!(a < c) && !(a <= c) && !(a > c) && !(a>= c)); 

Example 21 

3.7.7.5 4-state equality 

The 4-state equality operators (== and !=) include any metavalue bits in the comparison: 

bit3 a = 4; 

var3 b = 3`b100; 

var3 c = 3`b10x; 

assert(a == b && b != c); 

Example 22 

 

1 This is same as the corresponding Verilog behaviour. 
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3.7.7.6 4-state logic 

Table 9 below defines the results of the 4-state bitwise (&, |, ^, and ~) operators1. The corresponding 

tables for the 2-state operators can be found by simply ignoring the (shaded) X and Z rows and 

columns. 

& 0 1 X Z  | 0 1 X Z  ^ 0 1 X Z  ~  

0 0 0 0 0  0 0 1 X X  0 0 1 X X  0 1 

1 0 1 X X  1 1 1 1 1  1 1 0 X X  1 0 

X 0 X X X  X X 1 X X  X X X X X  X X 

Z 0 X X X  Z X 1 X X  Z X X X X  Z X 

Table 9: 4-state logic operations 

3.7.8 kmap 

The kmap type is a specialisation of var, and is used to simplify the specification and testing of 

combinatorial functions of several variables. An n-variable kmap is essentially a multi-dimensional var 

array of rank n, in which the element addressing has been modified into a reflected-binary Gray-coded 
form. For example, Figure 1 below shows a 5-variable Karnaugh map: 

1

000 010011001 110 111 101 100

00

01

11

10

1 1 0 1 0 1 1
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 1 1 1 1 0 1

ABC

D
E

 

Figure 1: 5-variable Karnaugh map 

The diagram is shown in a standard form, and shows the required output of a logic function of 5 
variables: fn(A,B,C,D,E). These inputs are encoded in a 5-bit binary word, with A being the most 

significant input (with a weighting of 24) and E being the least significant bit (with a weighting of 20). 

This logic function is coded in Maia as follows: 

// declare a 5-variable Karnaugh map 

kmap fn = 

      1 1 1 0   1 0 1 1 

      0 1 0 1   0 1 0 1 

      1 0 1 0   1 0 1 0 

      0 1 1 1   1 1 0 1; 

 

// examples of K-map usage, using Algol-style indexing: 

 

1 These operations are identical to the corresponding Verilog operations. 
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assert(fn[0,0,0,0,0] == 1);   // top-left element:     ABCDE = 00000 =  0 

assert(fn[1,0,0,0,0] == 1);   // top-right element:    ABCDE = 10000 = 16 

assert(fn[0,0,0,1,0] == 0);   // bottom-left element:  ABCDE = 00010 =  2 

assert(fn[1,0,0,1,0] == 1);   // bottom-right element: ABCDE = 10010 = 18 

Example 23 

When accessing individual elements of a kmap – in other words, the function output for a given set of 

inputs – it is important to understand the way in which the inputs are coded. To derive the coding for 
an n-variable K-map (which therefore contains 2n elements), the map should be drawn as a square with 
n rows and n columns (if n is even), or a rectangle with n-1 rows and 2(n-1) columns (if n is odd). The 
example above shows a 5-variable function coded in 4 rows and 8 columns. The columns and rows 
should then be encoded using reflected-binary Gray addressing, as shown, starting at the top left. 

The indexes into a kmap must be binary (in other words, an index variable may not contain a 

metavalue). The output, however, is a 4-state value, which must be coded as a one-bit literal constant 
(and not a constant expression). The metavalues 1'bx and 1'bz may alternatively be specified as a 

case-insensitive X or Z for simplicity1. 

K-map initialiser lists may optionally be enclosed in braces, in the same way that scalar initialisers may 
optionally be brace-enclosed. These two initialisers are identical: 

kmap a = {  

  0 X 1 Z 

  1 0 0 1  

}; 

kmap b = 0 X 1 Z 1 0 0 1; 

Example 24 

The precise format of the initialiser list is not important. Each element must be separated by 
whitespace, but newlines are not significant. The second initialiser contains a list of 8 elements, so 
must encode a 3-variable kmap, with 2 rows and 4 columns. 

K-map objects may be declared either as a kmap, or as a kmapn, where n is the number of variables in 

the K-map. Objects declared as a kmap must be completely initialised in their declaration to allow the 

compiler to derive the number of variables. Objects declared as a kmapn may be left uninitialised if 

desired, in which case they are given a default value of all X: 

kmap  a = 0 1 1 0;   // inferred as a 2-variable kmap 

kmap2 b = 0 1 1 0;   // declared as a 2-variable kmap 

kmap2 c;       // initialised to {X X X X} 

c = b;        // c now contains {0 1 1 0} 

kmap  d;       // error: must be initialised 

kmap  e = 0 1 1 0 1;  // error: initialisation must be complete 

kmap3 f = 0 1 1 0 1;  // Ok: initialised to {0 1 1 0 1 X X X} 

Example 25 

A single element extracted from a K-map using an indexing operation is of type var (a var1). It is not 

possible to extract anything other than a single element (a row or column, for example) from a K-map. 

 

1 This is the only place in which the literals X and Z may be used as constants; these literals will result in a syntax error if used 

in any other context. 
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K-map objects may be passed to and returned from functions in the normal way. 

3.7.8.1 Assignment compatibility 

K-maps are assignment-compatible only with other K-maps with the same number of variables. It is not 

possible to assign a K-map to, or from, a var array with the same underlying dimensionality. 

3.7.8.2 K-map operations 

The operators which support K-map operands are listed in Table 10 below. The logic operators use 4-
state logic (3.7.7.6). 

Operator result 

type 
Operation 

x'size int Returns the number of elements in x (2n, where n is the number of 

variables) 

x'meta bool Return true if x contains any metavalues, and false otherwise 

~x kmap Bitwise negation; inverts the entire K-map 

x = y kmap Assign K-map y to K-map x 

x == y bool Test x and y for equality 

x != y bool Test x and y for inequality 

&  |  ^ kmap Bitwise and, or, and xor 

&= |= ^= kmap Bitwise compound assignment 

(e1)?x:y kmap Returns K-map x if expression e1 evaluates true, and K-map y otherwise 

(..., x) kmap The comma operator; returns K-map x if x is the last expression 

Table 10: kmap operators 

3.7.9 bool 

An object which has been declared to be of type bool has only two potential values: false, and true. 

The specific behaviour of booleans depends on the level of the _StrictChecking pragma (12.7). At 

levels 0 and 1 the bool type has no special significance, and no boolean-related type checking is carried 
out.  

The syntax requires a boolean as the controlling expression for the if, do, while, for, and assert 

statements, as an operand of the logical operators, and as the first operand of the conditional operator. 
An expression that evaluates to an int, bit or a var may instead be used in these contexts, and is 

implicitly converted to a boolean according to (3.7.4.2). 

3.7.9.1 Levels 0, 1 

bool is not a distinct type at levels 0 and 1; an object declared as a bool is simply a one-bit bit (a 

bit1). The false literal is defined as 1'b0, while the true literal is defined as 1'b1. 
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An ivar object may additionally be used anywhere where a boolean is required by the syntax. If the 
object has an all-zero value, then it is considered to have a value of false; it otherwise has the value 
true. 

3.7.9.2 Level 2 

bool is a distinct type at level 2, and supports only the operators listed in Table 11 below. A boolean 

object is assignment-compatible only with another boolean, or with an ivar object. 

The binary logical and equality operators listed are defined if both operands are boolean, or if one is 
boolean and the other is an ivar: 

Operator result type Operation 

x'size int Returns 1 

x'meta bool Returns false 

!x bool Logical negation 

= bool Assignment 

== != bool Equality 

&& || bool Logical AND, OR 

(e1)?x:y bool Conditional operator; x and y must both be boolean 

(..., x) bool Comma operator; returns boolean x if x is the last expression 

Table 11: boolean operators 

As for levels 0 and 1, an ivar object may alternatively be used anywhere where a boolean is required by 
the syntax. 

3.7.10 struct 

A structure is a collection of one or more objects, possibly of different types, into a single named 
object. Structures are defined and declared conventionally, and may contain scalar or array objects of 
any type. Structure elements are accessed conventionally, using a dotted identifier notation. 

Structures and streams are, in many respects, syntactically identical. The discussion of structure 
definition and declaration below is equally applicable to streams. Structure and stream tags occupy the 
same namespace (3.4); it is illegal to give a structure and a stream the same name when they are in 
the same scope. 

Structures may be passed to and returned from functions in the normal way. Note that the keyword 
struct (or stream) must be used when declaring formal parameters and function return types1: 

struct s1 {...}; 

// function 'foo' has a single structure parameter and returns a structure 

s1 foo(s1 param) {...}        // error; must be... 

struct s1 foo(struct s1 param) {...}  // Ok 

Example 26 

 

1 The keywords are required in C, but not in C++. 
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3.7.10.1 Declaration and definition 

A structure declaration creates a new structure type, which is either named or anonymous. A structure 
definition creates a scalar or array object of a given structure type. The code below shows various 
examples of the definition and declaration of structures: 

// create named structure type 's1' 

struct s1 { int x,y; };           // declaration of 'struct s1' 

 

// create two objects: 'a' is of type 'struct s1', 'b' is of type 'array[4]  

// of struct s1' 

struct s1 a, b[4];             // definition of a, b  

 

// create objects 'c' and 'd'; both are of type 'array[3] of struct s1' 

struct s1[3] c, d;             // definition of c, d 

 

// create an anonymous struct type, and objects 'e' and 'f' of that type 

struct { int x,y; } e, f;          // definition of e, f 

 

// create named struct type s3, and objects 'g' and 'h' of that type 

struct s3 { int x,y; } g;          // definition of g 

struct s3 h;               // definition of h 

Example 27 

Note that the declaration of both stream and structure types must be terminated with a ';' character, 

even when there is no trailing object list (as in the first example above). The semicolon is required 
because the object list is optional; without it, the parser would find it difficult to distinguish between a 
type declaration with a trailing object list, and a type declaration with no object list, immediately 
followed by a new statement. 

Structures may contain declarations of other structures. The name of the nested structure is placed in 
the same scope as the structure in which it is nested. This code is therefore legal1: 

struct S { struct T {...}; }; 

struct T x; 

Example 28 

3.7.10.2 Structure assignment compatibility 

Structures are assignment compatible only if they are of the same type: 

struct s1 { int x, y; } a; 

struct s2 { int x, y; } b; 

struct s1 c; 

a = c;       // Ok; a and c are assignment-compatible 

c = b;       // Error; c and b are not assignment-compatible 

bool d = a == b;   // Error; a and b are not assignment-compatible 

Example 29 

 

 

 

1 This again follows C practice; the code is illegal in C++. 
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3.7.10.3 Structure operations 

The operators which support structure operands are listed in Table 12 below; x and y must be of the 

same type. Note that an object of type 'array of struct' is not a structure. 

The 'offset operator may also be applied to any member in a structure to find that member's offset 

within the structure, in bits. 

Two assignment-compatible structures may be tested for equality and inequality; the structures are 
equal if every member contains the same data. For a member which is a stream, the stream identifiers 
(or 'handles') are tested for equality; the identifiers will compare equal if they refer to the same stream. 

Operator result 
type 

Operation 

x'size int Return the size of structure x, in bits 

x'meta bool Return true if x contains any metavalues, and false otherwise 

x.m any Return member m in x 

x = y struct Assign struct y to struct x 

x == y bool Test x and y for equality 

x != y bool Test x and y for inequality 

(e1)?x:y struct Returns structure x if expression e1 evaluates true, and structure y otherwise 

(..., x) struct The comma operator; returns structure x if x is the last expression 

Table 12: structure operators 

3.7.10.4 Limitations 

Structures may contain other structure objects, but not references to those objects; this means that 

linked lists of structures cannot be built.  

3.7.11 stream 

Stream objects handle file read and write operations. stream is not a single type; it is instead a family 

of types which are specialised for specific file operations. Two stream types are provided: mode 1 
streams provide random read access into text data files, while mode 2 streams provide sequential write 
access to text data files. These two stream types do not provide generalised file I/O; they are instead 
specialised to allow the trivial creation and reading of data files which contain whitespace-separated 
data fields. 

The syntax of stream definitions and declarations is essentially identical to the equivalent structure 
syntax (see 3.7.10.1). In a structure, members are explicitly declared with a type and a name. In a 
stream, by contrast, there are no explicit members; the compiler automatically creates members using 
the information found in the stream's format property. These members can then be accessed in exactly 
the same way as structure members, using a dotted notation. Mode 1 and 2 stream members 
correspond to data fields within text files. 

Objects of a stream type may be viewed as either handles to the underlying stream or, alternatively, as 
references to that stream; both views are equivalent. The term handle is generally used here for clarity; 
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this does not imply that the stream is represented by a small integer. There are no operators which 
provide access to the underlying implementation of a stream (a stream handle cannot, for example, be 
read into an integer).  

The representation of a stream as a handle means that streams are passed to functions by reference 
(5.8), whether or not the & modifier is used for the formal parameter. In other words, if a stream is 

passed to a function, that function sees exactly the same stream as the caller, and not a local copy. 

Mode 1 and 2 streams provide no operators for opening and closing the stream; these operations are 
carried out automatically. Global and static streams are opened at the start of program execution, and 
remain open throughout the lifetime of the program; local streams (those declared within a function) 
are opened when the definition is encountered, and are closed when the function returns. If it is 
necessary for a local stream to retain state between function calls then that stream should be declared 
as static. 

3.7.11.1 Mode 1 streams 

Mode 1 streams are read-only streams that may be accessed randomly. Each line of the corresponding 
text file which is not a comment must contain a set of data fields which are described by a format 
specification. The file should contain only 2-value data; mode 1 streams cannot be used to read data 
that contains X and Z metavalues. The stream is analysed and processed during compilation and an 

error is reported if any data fields are found to contain invalid data. The file may contain arbitrary 
comments and whitespace, and any data that can be parsed as a constant (2.7), although the 
preceding size and base prefix can be omitted with an appropriate format string (3.7.11.1.4). 

Mode 1 streams provide no operations to open or close the associated text file, or to explicitly read 
either entire lines or individual fields; these operations are handled automatically. The stream is 
positioned to a given line in the (processed) file by assigning an integer to the stream. This operation 
automatically reads the data fields in that line of the file. It is guaranteed that the stream will always 
point to the first line of the file when it is first used, and that the data fields will contain the 
corresponding data from the first line of the file. 

3.7.11.1.1 Mode 1 pre-processing 

The data file is located and processed during compilation. The compiler confirms that the file exists; it 
then removes all comments and superfluous whitespace from a temporary version of the file, and 
confirms that each line of the resulting file is appropriate for the format. An error is issued if any data 
contains metavalues, or if any significant data bits have to be truncated to match a format 
specification. A warning is issued if any sized data item must be extended to match a format 
specification. 

The resulting temporary file contains exactly one line for each set of data inputs in the source file. The 
number of lines in this temporary file is defined as the 'size' of a mode 1 file. In the description below, 
a line refers to this processed set of data inputs, which contains one or more data fields; offset refers 
to the zero-based line number in the temporary file; and size refers to the number of lines in the 
temporary file. The original file is not modified by pre-processing. 

3.7.11.1.2 Mode 1 file positioning 

A mode 1 stream is set to a given offset simply by writing an integer to the stream; this integer is the 
zero-based offset in the processed file. Note that the offset of a line in the original and the processed 
files will not, in general, be the same. A specific data item may occur on, for example, line 20 of the 
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input file, but might appear on line 10 of the processed file after stripping comments and whitespace. A 
mode 1 offset is then essentially a 'meta'-offset which refers only to the significant lines in the input 
file. 

Any integer written to the stream is reduced modulo the size of the file; this means that it is not 
possible to have a file positioning error. A file offset therefore has the same behaviour as a 'small' bit 

or var object. The value of a bit4, for example, wraps around from 15 to 0 when incremented. The 

offset of a file which contains 100 lines wraps around from 99 to 0 when incremented, or from 0 to 99 
when decremented, in exactly the same way. 

The current offset in a file can be retrieved using the 'offset operator. The addition and subtraction 

operators are overloaded when one of the operands is a mode 1 stream and the other is an int or 

bit. In this case, the operator reads the current file offset and returns the sum or difference of the 

offset and the second operand. This behaviour can be used to step arbitrarily through the file. Some 
examples of file positioning are given in the code below; this code assumes that the file contains at 
least 15 lines. 

stream s1 a; 

a = 0;     // file rewind (automatic when the stream is first used) 

--a;      // set to the last line in the file 

assert(a'offset == a'size-1); 

a = 10;     // set to offset 10 (line 11) 

a = 4 + a;   // set to offset 14 (line 15) 

a -= 3;     // set to offset 11 

a++;      // set to offset 12 

Example 30 

Any file positioning operation automatically reads the data fields at the new offset. 

3.7.11.1.3 Mode 1 stream declaration 

A mode 1 stream type must be declared with three properties: a mode, a file, and a format. The mode 
must be the integer 1. All three properties must be present in the declaration, and may appear in any 

order. An example of a mode 1 stream declaration is: 

stream s1 { 

   mode   1; 

   file   "vectors/testfile.dat"; 

   format "%8'i %64'h %f", f1, f2, f3; 

} a; 

Example 31 

This declaration creates a new type of stream s1, and a new object a of this type. The corresponding 

text file is searched for in directories which are relative to the location of the source file containing the 
declaration. In this case, the compiler expects to find a directory named vectors in the same directory 

as this source file, and expects to find a file named testfile.dat in that directory. The file may be 

searched for in an absolute location by appropriately prefixing the filename (with '/' or 'C:\', for 

example). 

3.7.11.1.4 Mode 1 format property 

The format property specifies the expected contents of each line of the input file. It is composed of a 
string containing text which should be matched in the input, and one or more conversion specifications, 
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followed by one or more field names. Each conversion specification requires a corresponding field 
name; the first conversion specification is associated with the first field name, and so on. There must 
be exactly the same number of conversion specifications as field names. 

 For the example above, a line is expected to start with an 8-bit integer, followed by whitespace, 
followed by a 64-bit hex integer, followed by whitespace, followed by a floating-point value. Any 
subsequent fields on the line are ignored. If it was necessary to read only the first 8-bit integer on this 
line, then the format string  

format "%8'i", f1; 

would be sufficient. 

The format string must include exactly one name for each field. In the example above, the 8-bit integer 
field is named f1, the 64-bit integer field is named f2, and the float field is named f3. These are user-

supplied names for automatically-created read-only members within the stream object, which contain 
the current value of the corresponding field.  

The field data can be read using the same dotted notation used for structures. In this case, the current 

values of the 3 fields can be read as a.f1, a.f2, and a.f3. These values are automatically updated 

when the stream offset changes, to give the field values at the new offset. The fields may be 
considered to be read-only objects of a bit type, with a declared size given by the field width. 

Any text in the format string which is not a conversion specification, and which is not whitespace, must 
be matched exactly.  

3.7.11.1.5 Mode 1 conversions 

A conversion specification is composed of the % character, optionally followed by a field width, followed 

by a conversion character. If the field width is present, it must be a decimal integer, which must be 
followed by an apostrophe or a grave accent (back-tick) character. A conversion specification may also 
be specified as %%, when it is necessary to match a single % character in the input. The conversion 

characters supported for mode 1 are listed below. 

f  Matches a floating-point constant in the format defined in (2.7.3). If a field width is present, 

it must be 0, 1, or 2, for single, double, or extended double precision, respectively; the 

width defaults to 2 if it is not present. If the constant itself includes a precision suffix then 

that suffix must match the field width1. 

i  Matches any integer constant in the format defined in (2.7). If the constant does not have a 

size specification, it is assumed to have the size specified by _DefaultWordSize. In 

normal use, no field width is specified, and the width is derived from the size of the input 
data. 

h d o b Matches integer data in base 16, 10, 8, or 2, respectively. The input should contain only 

underscore characters and characters which are appropriate for the selected base; it must 
not contain any prefix characters. A field width is mandatory for these conversions. 

 

1 mtv's Verilog code generator supports only double-precision float data; an error will be reported if either the field width or the 
suffix do not have the appropriate values for double-precision. 
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For all conversions, the file data may optionally be preceded by a '–' character. For the integer 

conversions, the result is derived by taking the two's complement of the input data, for the appropriate 
field width. 

For the h, d, o, and b conversions, a field width must be provided, and the data in the input file may 

not contain a size prefix. An error will be reported if any of the data items corresponding to this field 
cannot be represented in the specified width.  

For the i conversion, a field width will not normally be provided, and the field width is found from the 

input data. In order for the compiler to derive the field width it is necessary for all the data items 
corresponding to this field to have the same size; an error is reported if this is not the case. 

For the i conversion, a field width may be provided if necessary. In this case, an error will be reported 

if any data items cannot be represented in the field width, and a warning will be reported if any 
explicitly-sized data items must be extended to reach the field width. 

3.7.11.1.6 Mode 1 stream example 

Consider, for example, this input file: 

/* comments 

 */ 

 

vector 1 data 10  // comment 

vector /* */ 2 data 20 

vector 3 data 30 

// comment 

 

/* */ vector 4 /* */ data 42 

Example 32 

In this case, the processed file contains 4 lines, has a size of 4, and can be accessed with offsets of 0, 
1, 2, and 3. This program is sufficient to read the entire file (assuming that the file is named 'test.dat', 
and is in the same directory as the program) and to display all eight values: 

/* this program produces the output: 

offset 0: vector is 1; data is 10 

offset 1: vector is 2; data is 20 

offset 2: vector is 3; data is 30 

offset 3: vector is 4; data is 42 

*/ 

stream s1 { 

  mode   1; 

  file   "test.dat"; 

  format "vector %i data %i", f1, f2; 

} a; 

 

void main() { 

  for(int i=0; i<a'size; i++) { 

    a = i;     // set the file offset 

    report("offset %d: vector is %d; data is %d\n", a'offset, a.f1, a.f2); 

  } 

} 

Example 33 
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3.7.11.1.7 Mode 1 'for all' operation 

A convenient way to iterate through all the lines in a mode 1 file is to use the for all statement. The 

example above can be more compactly coded as: 

void main() { 

  for all a 

    report("offset %d: vector is %d; data is %d\n", a'offset, a.f1, a.f2); 

} 

Example 34 

The for all statement as used here is defined to be equivalent to: 

void main() { 

  a = 0;         // automatic rewind 

  do { 

    report("offset %d: vector is %d; data is %d\n", a'offset, a.f1, a.f2); 

  } while((++a)'offset);  // relies on offset wrap-around 

} 

Example 35 

3.7.11.1.8 Mode 1 stream assignment compatibility 

Only mode 1 streams of the same type are assignment-compatible. This definition of assignment 
compatibility is the same as the corresponding one for structures; see 3.7.10.2. 

3.7.11.1.9 Mode 1 stream operators 

The operators which may be applied to mode 1 streams are listed in Table 13 below. When a stream is 
read in an expression the value returned is the stream, except in one specific case: the addition and 
subtraction operators are overloaded to read the current offset in the stream, rather than the stream 
itself.  

The first column in the table shows the operator. In this column, x, y, and z are expressions which 

evaluate to the same stream type (and so are assignment-compatible), and i is an expression which 

evaluates to an int or bit type. x, y, and z may be any expression that evaluates to a scalar stream. 

Note that an object of type 'array of stream' is not a stream. 
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Operator result 

type 
Operation 

x'size int Return the number of lines in stream x 

x'offset int Return the current offset in stream x 

x++ stream Increment the offset in x, and return the old state of x 

x-- stream Decrement the offset in x, and return the old state of x 

x.f bit Return the value of field f in x 

++x stream Increment the offset in x, and return the new state of x 

--x stream Decrement the offset in x, and return the new state of x 

x+i, i+x int Read the stream offset from x, carry out the addition, and return the int 

result 

x-i, i-x int Read the stream offset from x, carry out the subtraction, and return the 

int result 

x = y stream Assign stream y to stream x, and return stream x 

x = i stream Set the offset of stream x to i, and return stream x 

x += i stream Identical to (x = x+i), and so returns stream x 

x -= i stream Identical to (x = x-i), and so returns stream x 

(e1)?y:z; stream The ternary operator; y and z must be assignment-compatible. Returns 

stream y if e1 evaluates true, and stream z otherwise 

(..., x) stream The comma operator; returns stream x if x is the last expression 

Table 13: mode 1 stream operators 

3.7.11.2 Mode 2 streams 

Mode 2 streams are write-only streams that must be accessed sequentially. Each line of the output text 
file contains a set of data fields which are described by a format specification; each line of the file must 
therefore have the same format. It is only possible to write 2-value data; a mode 2 stream cannot be 
used to write data that contains X and Z metavalues.  

The stream is written by assigning data to any fields defined by its format specification (3.7.11.2.2), 
and then applying the pre-increment operator to the stream object. The increment operation writes the 
current line, and increases the stream size by one. The output file is created when the object is 
declared; if it already exists, it will be over-written. The first increment operation therefore writes the 
first line of the file. 

If a data field is not assigned to before incrementing the stream, that field will retain its last value. The 
initial value of a field is undefined. An error is reported if a given field is never written to; however, no 
error is reported if a field is written on some occasions, but not others. 

Mode 2 streams are associated with a single write-only output file, and it is therefore not possible for 
multiple stream objects to have their own private copy of this file. It therefore makes little sense to 
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declare multiple objects of the same mode 2 stream type. Where this does happen, the objects are 
defined to be references to each other: 

// a and b are defined to be the same object, which writes to a single output file: 

stream m2 { 

  mode 2; 

  ... 

} a, b; 

 

// but c and d are different objects, which read from their own private copies of 

// an input file: 

stream m1 { 

  mode 1; 

  ... 

} c, d; 

Example 36 

3.7.11.2.1 Mode 2 stream declaration 

A mode 2 stream is defined in the same way as a mode 1 stream (3.7.11.1.3), except that the mode 
must be the integer 2. The specified file is opened for writing; if the file already exists, it is over-
written. 

3.7.11.2.2 Mode 2 format property 

The format property specifies the required form of each line in the output file. It has the same form as 
a mode 1 format (3.7.11.1.4), and is made up of a string containing whitespace1, text which is copied 
to the output line, and conversion specifications; the string is followed by a list of field names. 

3.7.11.2.3 Mode 2 conversions 

The conversion specification is the same as the report statement conversion specification (6.13). The 

conversion specifiers supported for mode 2 are: 

f e E g G Floating-point output 

x d o b  Hexadecimal, decimal, octal, and binary output, respectively 

3.7.11.2.4 Mode 2 stream fields 

Mode 2 stream fields are write-only objects with the properties of a bit, and can be assigned to from 

any object which is assignment-compatible with a bit. The size of the field is determined statically by 

the compiler, by examining the size of all objects which are assigned to the field2. It is an error if a 
given field is assigned to from multiple objects which do not have the same size. 

 

1 Whitespace in the format string is collapsed into a single space in the output line. 

2 For the report statement, the arguments are single expressions with a known size; for mode 2 format specifications, the 
arguments (fields) are simply names, and their size must be determined from assignments to the fields. 
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stream m2 { 

  mode   2; 

  file   "foo"; 

  format "%x %6.3f", field1, field2; 

} a; 

int4 b; 

var5 c; 

a.field1 = b;  // 'field1' sized at 4 bits 

... 

a.field1 = c;  // error: is 'field1' 4 or 5 bits? 

Example 37 

3.7.11.2.5 Mode 2 stream assignment compatibility 

Only mode 2 streams of the same type are assignment-compatible. However, since all objects of a 
given mode 2 stream type are actually the same object, the concept of assignment compatibility is 
essentially redundant. The assignment and ternary operators are therefore also redundant with mode 2 
stream operands, but are defined to allow these operators to be used with structure operands which 
contain mode 2 streams. 

3.7.11.2.6 Mode 2 stream operators 

The operators which may be applied to mode 2 streams are listed in Table 14 below. When a stream is 

read in an expression the value returned is the stream itself.  

The first column in the table shows the operator. In this column, x, y, and z are expressions which 

evaluate to the same stream type (and so are assignment-compatible). Note that an object of type 
'array of stream' is not a stream. 

Operator result 
type 

Operation 

x'size int Return the number of lines in stream x; will be 0 before the first increment 

operation  

x.f void Mode 2 stream field, write-only; see 3.7.11.2.1 

++x stream Write the current line, increment the size of stream x, and return x 

x = y stream Assign stream y to stream x, and return stream x 

(e1)?y:z stream Conditional operator; y and z must be assignment-compatible. Returns 

stream y if e1 evaluates true, and stream z otherwise 

(..., x) stream Comma operator; returns stream x if x is the last expression 

Table 14: mode 2 stream operators 
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3.7.12 array 

Objects may be combined into arrays, which are aggregates of objects of the same type. Arrays are 

declared by listing the maximum size of each dimension in square brackets. Consider, for example, the 
array object defined by this declaration: 

int [3][4][5] a; 

Here a is a 3-dimensional array of 3 x 4 x 5 ints. The expression a[i] yields a two-dimensional array 

of 4 x 5 ints; the expression a[i][j] yields a one-dimensional array of 5 ints; and, finally, the 

expression a[i][j][k] yields a scalar object of type int. The rank of an expression or object is 

defined as its dimensionality. a is a 3-dimensional array and has rank 3. The expression a[i], 

however, has rank 2; the expression a[i][j] has rank 1; and the expression a[i][j][k] has rank 

0. Any scalar object has rank 0. 

Arrays are stored in memory in row-major order; in other words, the last subscript varies fastest. 

3.7.12.1 Array indexing 

Zero-based indexes are used when accessing an array. For this example, the first index must evaluate 
to an integer in the range 0 to 2; the second must evaluate to an integer in the range 0 to 3; and the 
third must evaluate to an integer in the range 0 to 4. The index expressions must not contain any 
metavalues. A combination of static and dynamic checking is used to confirm that all array indexes are 
in range. An array index which is a constant expression is checked during compilation, and a syntax 
error is raised if it is out of range. A dynamic index is checked at run-time, and a run-time error is 
raised if it is out of range (see 11.1.1 below). 

3.7.12.2 Subscript positioning 

Arrays may be declared by listing the subscripts after the type name, or after the object name, or any 
combination of the two. These declarations, for example, define objects of type int[3][4][5], and a 

function which returns an int[3][4][5]: 

int [3][4][5] a;    // form 1 

int [3][4] b[5];    // combined form 1 and 2 

int [3] c[4][5];    // combined form 1 and 2 

int d [3][4][5];    // form 2 

 

int[3][4][5] foo {...} // function returning array, form 1 

Example 38 

However, it should be noted that only form 1 can be used to define a function which returns an array 
object, and form 1 also makes it obvious that the object's dimensionality is part of the type of that 
object1. 

 

1 Form 2 is provided for compatibility with C and related languages. More recent languages tend to use form 1; Maia's ability to 
use both forms, and a combination of the two, follows Java usage. Java, however, provides a (deprecated) feature to allow 
functions to return arrays using form 2; Maia requires the use of form 1. C does not allow functions to return arrays. 
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3.7.12.3 Comma-separated dimension lists 

Arrays may be declared, or accessed, using an alternative syntax, in which the array dimensions are 
listed in a single pair of square brackets, with a comma-separated list of dimensions1. In this example, 
both a and b are of type int[2][3] (or, equivalently, int[2,3]): 

int [2][3] a = {{0,1,2}, {3,4,5}}; 

int b[2,3]   = {{0,1,2}, {3,4,5}}; 

 

assert(a == b); 

assert(a[0][1] == b[0,1]); 

assert(a[0,1]  == b[0][1]); 

Example 39 

The comma-separated list is more compact when accessing multi-dimensional arrays. kmap objects, in 

particular, may have many dimensions and can be tedious to access using the fully-bracketed form. 

When using this alternative syntax, array index expressions may not themselves be comma 

expressions, unless the comma expression is enclosed in parentheses2. 

3.7.12.4 Array assignment compatibility 

Expressions that evaluate to arrays are assignment-compatible only if: 

1. they have the same rank; 

2. each dimension bound is identical; 

3. the base type of each array is assignment-compatible; 

4. the objects of that base type have the same size. 

This code shows various examples of arrays which are, or are not, assignment-compatible: 

int   [3,4,5] a; 

int   [4,5]   b; 

var32 [5]     c; 

bit7  [5]     d; 

 

a[0] = b;    // Ok 

b = a[1];    // Ok 

c = a[0,0];   // Ok (_DefaultWordSize assumed to be 32) 

d = a[0,0];   // error: a is an array of ints; d is an array of bit7 

Example 40 

 

1 The comma-separated list is used in Algol and derived languages; the fully-bracketed list is used in C and related languages. 

2 Function argument lists (argument-expression-list), which are also comma-separated, have the same restriction. 
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3.7.12.5 Array operations 

The operators which support array operands are listed in Table 15 below. For the ternary operator (?:) 

x and y must be of the same type; for the remaining operators, they must simply be assignment-

compatible. 

The 'offset operator may also be applied to any element in an array to find that element's offset 

within the array, in bits. 

Two assignment-compatible arrays may be tested for equality and inequality. The arrays are equal if all 
corresponding elements contain the same data. For an array of streams, the stream identifiers (or 
'handles') are tested for equality; the identifiers will compare equal if they refer to the same stream. 

Operator result type Operation 

x'size int Return the size of array x, in bits 

x'meta bool Return true if x contains any metavalues, and false otherwise 

x[e1] any Return element e1 in x 

x = y x Assign array y to array x 

x == y bool Test x and y for equality 

x != y bool Test x and y for inequality 

(e1)?x:y x Returns array x if expression e1 evaluates true, and array y otherwise 

(..., x) x The comma operator; returns array x if x is the last expression 

Table 15: array operators 
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4 OPERATORS AND EXPRESSIONS 

4.1 Introduction 

An object is a region of data storage which has an associated value. Every object is either a data object 
(2-state or 4-state), a boolean, a stream, or an aggregate containing a collection of data, boolean, and 
stream objects. Objects may be manipulated or combined using operators, in expressions. 

The order in which the objects in an expression are combined is defined by the language's precedence 
and associativity rules (4.5.1). Each such combination (an addition or subtraction, for example) defines 
a sub-expression. Each sub-expression is evaluated in turn, and is replaced by a temporary object; this 
temporary object itself has a value, which may be combined with the values of the remaining sub-
expressions. 

An expression has a number of properties, which may be retrieved with the attribute operators 
(4.5.4.6). The most significant of these is its size. The meaning of the size attribute depends on the 
type of the object. However, in most cases, an object's size is the number of bits (2-state or 4-state) 
which are required to store that object. An object's size may range from 1 bit, up to a compiler-
determined maximum, which is at least 224 bits.  

With the exception of int objects, Maia does not specify any interpretation of the data pattern within a 

data object. However, some operators (the signed comparisons, for example) may assume that the 
data is in 2's complement format, and that the data may be sign-extended by copying the value of the 
top bit. Other operators may assume that the data is in an IEC floating-point format. A non-int data 

object itself has no property that specifies what format the data is in; the data interpretation is a 
higher-level concern, and is the responsibility of the programmer. In this respect, non-int data objects 

can be thought of as memory locations within a digital electronic system. The storage location itself has 
no properties, apart from its size; the control circuitry simply routes the contents of the storage location 
to a function unit, and then writes the transformed data to the same, or another, storage location. The 
function unit determines the operation to be carried out, and a given storage location may be 
connected to any function unit as required. In Maia, the function unit corresponds to an operator. 

Under most circumstances, objects can be combined in expressions in a simple and intuitive way. This 

code, for example, carries out 4-state integer arithmetic operations on 24-bit variables: 

var24 acc, b[10], c[10]; 

for(i=0; i<10; i++) 

 acc += b[i] * c[i]; 

Example 41 

For this example, the multiplication and addition are automatically selected as 24-bit operators, and the 
assignment to acc is selected as a 24-bit assignment. However, a number of potential complications 

may arise in these cases: 

• if floating-point operations are required; or 

• if the two operands of a binary operator have different sizes; or 

• if an explicitly-sized operator is required. 
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Floating-point operations are described in (4.6). The complication in the remaining two cases is that at 
least one operand will have to be truncated or extended and, if it is extended, it may potentially require 
sign-extension. The sizing and extension rules that govern these cases are described (4.4). These rules 
define a hardware-centric view of arithmetic and logical operations, which is, in general, unlike the 
equivalent rules used in general-purpose programming languages, or in common HDLs.  

4.2 Operator syntax 

Many operators are available in both signed and unsigned versions, and in explicitly sized versions. The 
sign and size options must follow the basic operator symbol, with no intervening whitespace. The full 
operator syntax is OP[#][$n], where the parts in brackets [] are optional. The # denotes a signed 

version of the operator, while the $n denotes an explicitly-sized (n-bit) operator. 

All versions of an operator have the same precedence and associativity as the basic operator itself. An 
operator which is signed or sized may optionally be enclosed in parentheses for clarity. 

The base operators are listed in Table 16, while the floating-point operators are listed in Table 18, 
Table 19, and Table 20. Some examples of operators are: 

A = B - C;    // unsigned subtraction, implicitly sized 

A = B -# C;    // signed subtraction, implicitly sized 

A = B -$8 C;   // unsigned 8-bit subtraction 

A = B -#$21 C;   // signed 21-bit subtraction 

A = B (-#$21) C;  // operators may be bracketed for clarity 

 

var16 d; 

A =$21  d;    // unsigned (zero-extending) assignment (16 to 21 bits) 

A =#$21 d;    // signed (sign-extending) assignment (16 to 21 bits) 

 

A = (~#$21) d;   // invert operator: sign-extend d to 21 bits, invert 

Example 42 

4.3 Signed operators 

Signed and unsigned operators are distinguished by the presence or absence, respectively, of a trailing 
# character. The + operator, for example, represents an unsigned addition, while the +# operator 

represents a signed addition. There are only two differences between the signed and unsigned versions 
of an operator: 

1. If an input operand requires extension, then it will be sign-extended for a signed operator, 

and zero-extended for an unsigned operator 

2. For some operators the signed and unsigned versions of the operator may have different 
behaviour, and produce different results when given the same operands. The affected 
operators are the comparisons, right shift, division, and remainder (<, <=, >, >=, >>, /, %)1. 

The operators which may be signed are shaded in Table 16 below. 

 

1 The left shift operator has named signed and unsigned alternatives (.SLA for <<#, and .SLL for <<), but both have the 

same behaviour; the names are provided only for consistency with the right-shift versions (.SRA and .SRL). 
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4.4 Expression evaluation 

When evaluating an expression, the current operator is first identified using the precedence and 
associativity summarised in Table 16. This operator, together with its operand(s), forms the current 
sub-expression. This sub-expression is evaluated according to (4.4.1), and is replaced with a temporary 
object of the same type and size as the sub-expression. This procedure is repeated until the complete 
expression has been evaluated. 

Expressions may be arbitrarily parenthesised to specify the order in which operators should be 

evaluated. 

The operands of an operator are always evaluated in a left-to-right order1: 

int a = 4; 

a = a++ + a;  assert(a == 9);      // a is guaranteed to be 9, and not 8 

a = fn1() – fn2();                 // fn1 is called before fn2 

Example 43 

4.4.1 sub-expression evaluation 

The procedure for evaluating the current sub-expression is as follows: 

1. The operation size is first determined as: 

i. If the operator is explicitly sized, then that size is the operation size; 

ii. Otherwise, if the operator is a shift or rotate, then the operation size is the size of the left 
operand; 

iii. Otherwise, the operation size is the size of the largest operand. 

2. If any operands of the current operator have a size which is greater than the operation size, 
then those operands are truncated to the operation size 

3. If any operands of the current operator have a size which is less than the operation size, then 
those operands are zero-extended if the operator is unsigned, and sign-extended if the operator 
is signed, to the operation size 

Note that: 

a) The assignment operator has a single operand (the right hand side) 

b) The conditional or ternary operator is considered to have 2 operands for the purposes of 
deriving the operation size. In the expression e1?e2:e3, for example, only e2 and e3 

participate in operation sizing 

c) The compound assignments are expanded before applying these rules. The expression a&=b, 

for example, is treated as a=a&b 

d) The floating-point operators are explicitly sized (as single, double, or extended-double 
precision), and the operands are required to have the same size as the operator2. There is 
therefore no potential ambiguity when evaluating floating-point sub-expressions.  

 

1 Left-to-right ordering is common in many languages (C# and Java, for example); the ordering is undefined in C. 

2 If an operand does not have the required size (a single-precision operand is required for a double-precision operator, for 
example) then it should be converted to the correct size using a cast operator (4.5.6). 
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4.5 Operators 

4.5.1 Precedence and order of evaluation 

Table 16 summarises the operator precedence and associativity rules. The operators listed in (4.5.4) 
onwards are also listed in order of precedence, with the highest first. Operators on the same line of 
Table 16 have the same precedence; rows are in order of decreasing precedence1. Where an operator 
in the table implies an arithmetic operation (++, --, *, /, %, +, -, <, <=, >, and >=), that operation is 

defined only for integer values, using 2-state or 4-state integer arithmetic. The floating-point operators 
are listed separately (on page 74), but have the same precedence and associativity as the integer 
version. Note that the equality operators (== and !=) are bitwise operators, and so are valid for both 

integer and floating-point use. 

An operator's associativity determines the grouping of operators at the same precedence level. The 
addition and subtraction operators, for example, associate left-to-right, and the expression A–B+C is 

therefore evaluated as (A–B)+C, rather than A–(B+C). 

 Operators      Associativity 

postfix: () [] ++ -- 'size 'msb 'meta left to right 

 'offset 'last .(x) .(x:y) .    

prefix: ! ~ ++ -- + - (cast) right to left 

binary: * / %     left to right 

 + -      left to right 

 << >> .R<< .R>>    left to right 

 < <= > >=    left to right 

 == !=      left to right 

 &       left to right 

 ^       left to right 

 |       left to right 

 &&       left to right 

 ||       left to right 

ternary: ?:       right to left 

assignment: = *= /= %= += -= &= right to left 

 ^= |= <<= >>= .R<<= .R>>=   

comma: ,       left to right 

Table 16: precedence and associativity of operators 

The operators which may optionally be signed and sized are shaded in the table. 

 

1 Apart from some deletions (->, &, *, and sizeof) and additions ('size, 'msb, 'meta, 'offset, 'last, .(x), 

.(x:y), .R<<, .R>>, .R<<=, and .R>>=), this table is otherwise identical to the corresponding table for C. 
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4.5.2 Operator equivalents 

A number of operators have alternative names. These are listed in Table 17. 

Operator Form 1 Form 2 

Rotate Left .R<< .ROL 

Rotate Right .R>> .ROR 

Shift Left Logical << .SLL 

Shift Left Arithmetic <<# .SLA 

Shift Right Logical >> .SRL 

Shift Right Arithmetic >># .SRA 

Unsigned Less Than < .ULT 

Unsigned Greater Than > .UGT 

Unsigned Less than or Equal <= .ULE 

Unsigned Greater than or Equal >= .UGE 

Signed Less Than <# .SLT 

Signed Greater Than ># .SGT 

Signed Less than or Equal <=# .SLE 

Signed Greater than or Equal >=# .SGE  

Equality == .EQ 

Inequality != .NE 

Logical AND && and 

Logical OR || or 

Table 17: Operator equivalents 

The textual alternative names for the shifts and comparisons are already implicitly signed or unsigned, 
and so may not be followed by a # character. They may, however, be sized. Some examples of valid 

and invalid operators are shown below. 

.SRL   // implicitly-sized right shift 

.SRL#  // invalid; .SRL is implicitly unsigned 

.SRL$12  // 12-bit right-shift 

.SRA#  // invalid; .SRA is implicitly signed 

>>#   // shift right arithmetic; equivalent to .SRA 

Example 44 

4.5.3 Primary expressions 

Syntax 

primary-expression: 

   identifier 

   constant 

   ( expression ) 
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4.5.4 Postfix operators 

Syntax 

postfix-expression : 

   primary-expression 

   postfix-expression [ expression ] 

   postfix-expression ( argument-expression-listopt) 

   postfix-expression . identifier  

   postfix-expression ++ 

   postfix-expression -- 

   postfix-expression . bitslice 

   postfix-expression ` attribute-operator 

   postfix-expression ' attribute-operator 

4.5.4.1 Array subscripting 

A postfix expression followed by one more expressions in square brackets designates an element of an 
array object (3.7.12). 

4.5.4.2 Function calls 

A postfix expression followed by parentheses () containing a possibly empty list of comma-separated 

expressions is a function call. The expressions within the parentheses are the actual parameters to that 
function; the expressions are evaluated left-to-right. 

Syntax 

argument-expression-list : 

   assignment-expression 

   argument-expression-list , assignment-expression 

4.5.4.3 Structure and stream members 

A postfix expression followed by the . operator and an identifier indicates a structure or stream access. 

The postfix expression must evaluate to a structure (3.7.10) or stream (3.7.11), while the identifier 
must be a member within that structure or stream. 

4.5.4.4 Postfix increment and decrement operators 

A postfix expression followed by ++ or –- indicates an increment or decrement operation. In both 

cases, the result is the value of the operand. After the result is obtained, the value of the operand is 
incremented, for ++, or decremented, for --. The operand must be an lvalue. 

If the operand evaluates to a data object, then the increment or decrement operation is carried out by 
adding or subtracting 1 to or from the least significant bit of the object (in other words, it is an integer 
operation). If the operand evaluates to a mode 1 stream, then the increment or decrement operation is 
applied to the file offset within that stream. It is an error if the operand evaluates to anything else. 

4.5.4.5 Bitslice operator 

A postfix expression followed by the . operator and parentheses () indicates a bitslice, or a bitfield 

access, within the postfix expression. Bitslices may be applied both to lvalues and to rvalues. It is an 
error if the postfix expression does not evaluate to an arithmetic object. 
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Syntax 

bitslice : 

 expr1.(expr2) 

 expr1.(expr-msb : expr-lsb)  

expr1 :     expression 

expr2 :     expression 

expr-msb : expression 

expr-lsb : expression 

Semantics 

Bitslices are addressed using descending indexes. If two indexes are specified, they may be equal to 
address a single bit. In this case, the bitslice may be expressed in a more compact form by specifying 
only one index. 

The LSB of any object always has an index of 0. The full set of requirements for the indexes can 

therefore be expressed as follows: 

(expr2 < expr1'size) && (expr2 >= 0) 

(expr-msb < expr1'size) && (expr-msb >= expr-lsb) 

expr-lsb >= 0 

Indexes are evaluated and checked at runtime, and a runtime error is raised if the equalities above are 
violated. 

Some examples of bitslice usage are: 

bit16 temp = 0xffff; 

temp.(4:2) = 4;       // set bits [4,3,2] to [1,0,0]; others unchanged 

temp.(7:5) = 0xb;   // set bits [4,3,2] to [0,1,1] 

assert(temp == 0xff73); 

 

bit16[3] R = {0, 0, 0xf000}; 

bit4 data; 

R[2].(1) = 1;         // set bit 1 of R[2] 

data = R[2].(15:12);  // set data to 15 

assert(R[2] == 0xf002 && data == 15); 

 

var16 test1 = 0xabcd; 

var16 test2 = 0xbcde; 

test1.(test1'size-1 : test1'size-4) = test2.(3:0); 

assert(test1 == 0xebcd); 

assert((test1 ^ test2).(15:8) == 0x57); 

assert(test1.(0:0)'size == 16); 

Example 45 

The size of a bitslice expression is the size of the object being sliced (the postfix expression); it is not 
the size implied by the slice indexes, which may change at runtime. The slice can be considered to be a 
temporary object of the same size as the original object, with the required bits shifted to the bottom of 
the temporary. 

Size checking for bitslice expressions may be relaxed when writing to a DUT port in a drive statement; 
see 3.1.4. 
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4.5.4.6 Attribute operators 

A postfix expression followed by the ' (or `) operator and an attribute returns an attribute, or 

property, of the operand. 

Syntax 

   attribute-operator: one of 

      size offset msb meta last last(expression) 

Semantics 

size  The size attribute returns the size of the operand. If the operand evaluates to a data object, a 
boolean, a structure, or an array, then the value of the attribute is the total size, in bits, of that 
data object, boolean, structure, or array. If the operand evaluates to a mode 1 or a mode 2 
stream, then the value of the attribute is the number of lines in the corresponding text file. It is 
an error if the operand evaluates to anything else. 

offset  The offset attribute returns an offset within an object. If the operand evaluates to a member 
within a structure, or is an array indexing expression, then the value of the attribute is the 
offset of that member or element within the structure or array, measured in bits. If the operand 
evaluates to a mode 1 stream, then the value of the attribute is the current line number within 
that stream. It is an error if the operand evaluates to anything else. 

The offset of the first object within its container always has the value 0. 

msb  The operand must evaluate to an ivar object. The return type of the msb attribute is var1 for a 

var object, and bit1 otherwise; its value is the value of the most significant bit of that operand. 

The msb is copied to carry out sign extension, even if it is a metavalue. 

meta  The operand may evaluate to anything except a stream or a stream member. The meta attribute 

returns true if the operand is, or contains, a data object which has a metavalue (X or Z), and 

false otherwise. If the object is an aggregate which contains a stream, then that stream 

contributes a value of false to the overall determination. 

last   Returns a previous value of the operand. 

The 'size and 'offset attributes return an int object. 

The 'last attribute returns a previous value of a DUT input or IO, as it would have been sampled by 

the DUT1. The operand must be declared as a DUT input or IO, and must appear in a clocked drive 
declaration (8.3.2), to allow the sample clock to be identified. The expression sig.last(n) returns 

the n'th previous value of signal sig, as it would have been sampled by the relevant clock at the DUT. 

The expression sig.last(1)returns the value of sig that would have been sampled on the previous 

clock edge, while sig.last(2)returns the value that would have been sampled on the preceding 

edge, and so on. The expression sig.last is equivalent to sig.last(1). If the edge count (n) is 

 

1 The 'last attribute may be used to avoid race conditions where one thread generates a DUT input, while another thread reads 
the same input (either directly or from a DUT output which has a combinatorial path from the input). In this case, the writer and 
reader threads will execute in an arbitrary order, and the reader may read the value before it has been written. This condition 
can be avoided by instead reading the input as it would have been seen by the DUT at the previous clock edge. 
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supplied, it must be greater than or equal to 1. The maximum value of n is compiler-determined, but 

will be at least 4096. A run-time error will be raised if the edge count is out of range. 

The value returned is maintained in a pipeline by the testbench itself, and is sampled on the relevant 
sample clock, with the supplied or default setup time for the relevant signal. If the edge count for a 
given signal is statically determinable then the compiler will generate the sample pipeline for that signal 
with the size given by the maximum edge count in the source code. If the edge count cannot be 
determined during compilation then the sample clock must instead be declared with a pipeline 

specification, which gives the pipeline size required. If, for example, a 10-cycle sample history is 
required for signal D, and the relevant clock is signal C, then C should be declared with 

'create_clock C –pipeline 10'. In this case, a run-time error will be raised if, during execution 

of the model, the edge count is found to be outside the range [1,10]. 

Examples 

var24[2][3][4] x; 

assert( 

 (x'size == 576)   && 

 (x[0]'size == 288)  && 

 (x[0][0]'size == 96) && 

 (x[0][0][0]'size == 24)); 

Example 46 

DUT { 

   module reg4                   // 4-bit reg with sync reset 

     (input  C, R, 

      input  [3:0] D, 

      output [3:0] Q); 

   create_clock C -pipeline 2;   // 2-level sample pipe 

   [C, R, D] -> [Q]; 

} 

 

void main() { 

   int level = 1; 

   [.C, 1, 0] -> [0];            // reset 

   [.C, 0, 1] -> [1];            // n+1 cycles required to prime n-cycle pipe 

   for(bit4 i=2; i<10; i++) { 

      [.C, 0, i] -> [i]; 

      assert((D'last(level) == i) && (D'last(level+1) == i-1)); 

   } 

} 

Example 47 
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4.5.5 Unary operators 

Syntax 

unary-expression: 

   postfix-expression 

   unary-operator unary-expression 

   ( type-name )  unary-expression 

 

unary-operator: one of 

   ++ -- + - ~ ! float+ float- 

 

4.5.5.1 Prefix increment and decrement 

The expressions ++E and --E are equivalent to (E+=1) and (E-=1), respectively. E must be an 

lvalue. 

If the operand evaluates to an int, bit or var object, then that object is incremented or 

decremented using 2-state or 4-state integer arithmetic, in the same way as the postfix ++ and –- 

operators (4.5.4.4). The result is the new value of the operand after the increment or decrement has 
completed. 

If the operand evaluates to a mode 1 stream, then the stream offset is incremented or decremented, 
and the new state of the stream is returned. If the operand evaluates to a mode 2 stream, then ++E 

writes the current line to E, increments the size of E, and returns the new state of E.  

It is an error if the operand evaluates to anything else, or if the -- operator is applied to a mode 2 

stream. 

4.5.5.2 Unary arithmetic, bitwise, and logical operators 

The operand of the unary + and unary - operators (and their floating-point equivalents) must evaluate 

to an ivar object. The result has the type and size of the operand. 

The unary addition operators return their operand unless that operand is a var which contains one or 

more metavalues; in this case, the result has a value of all X, as if +E had been evaluated as (0+E). 

The plain – operator carries out integer subtraction from 0 (with the exception noted in (4.6.1.2)), 

while the floating-point equivalents carry out a floating-point subtraction from 0.0. An integer 

subtraction from 0 is carried out using 2-state integer arithmetic if the operand is of type int or bit, 

or 4-state integer arithmetic if the operand is of type var. The .F-, .F1-, .F2-, and .F3- operators 

carry out a floating-point subtraction from 0.0, and return the value of the result. 

For the floating-point unary operators, the operand is required to have the same size as the operator 

(single, double, or extended-double precision). 

The result of the complement operator ~ is the bitwise complement of its operand. The operand must 

evaluate to a data object; the result has the same type and size as the operand. The complement 
operation for 4-state objects is defined in (3.7.7.6). 
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The result of the logical negation operator ! is of type bool. It has value false if the operand 

evaluates true, and value true otherwise. 

4.5.6 Cast operators 

The cast operators convert a data object to or from a floating-point representation. When converting a 

var to floating point, any metavalues bits are converted to 1. 

Syntax 

type-name: one of 

   real1 real2 real3 int bitn varn 

Examples 

var8  i = 255;     // i is 8`hff 

real1 a = (real1)i;  // a is 255.0F 

real2 b = (real2)i;  // a is 255.0 (64'h406f_e000_0000_0000) 

real3 c = (real3)i;  // a is 255.0L 

int   j = (int)b;   // j is an integer, with value 8'hff 

Example 48 

Floating-point data may also be converted to a sized integer, with unused high bits discarded:  

real2 b; 

int   d, e, f; 

for(b = 254.0; b .F< 258.0; b = b .F+ 1.0) { 

   d = (int) b; 

   e = (bit8)b; 

   f = (bit1)b; 

   report("d: %d; e: %d; f: %d\n", d, e, f); 

} 

Example 49 

This code produces the following output: 

d: 254; e: 254; f: 0 

d: 255; e: 255; f: 1 

d: 256; e: 0; f: 0 

d: 257; e: 1; f: 1 

4.5.7 Multiplicative operators 

The multiplicative operators implement multiplication, division, and remainder. Both operands are 

required to have arithmetic type. 

When using the floating-point versions of the operators, both operands, and the operator itself, are 
required to have the same size (single, double, or extended-double precision), and the result has that 
size. 

Syntax 

multiplicative-expression: 

   unary-expression 

   multiplicative-expression * unary-expression 

   multiplicative-expression / unary-expression 
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   multiplicative-expression % unary-expression 

   multiplicative-expression float* unary-expression 

   multiplicative-expression float/ unary-expression 

Semantics 

The *, /, and % operators, with no suffix, implement unsigned integer multiplication, rational division, 

and remainder, respectively. The *#, /#, and %# operators implement the signed versions of these 

operations. The unsigned and signed versions of the operators differ as follows: 

1 If an operand requires extension, then the unsigned operators will zero-extend that operand, 

while the signed operators will sign-extend that operand; 

2 The unsigned operators view their operands as positive binary integers, and carry out an 
unsigned operation; the signed operators view their operands as two's complement integers, and 
carry out a signed operation. 

The / and /# operators return the rational result truncated towards 0; the % and %# operators return 

the remainder of the corresponding division (/ or /#) operation. This is often referred to as "truncating 

division"1: 

 7 /#  3  =  2 rem  1 

-7 /#  3  = -2 rem –1 

 7 /# -3  = -2 rem  1 

-7 /# -3  =  2 rem –1 

The relationship dividend = quotient * divisor + remainder holds for these operators. 

4.5.8 Additive operators 

The additive operators implement addition and subtraction. Both operands are required to have 
arithmetic type. 

When using the floating-point versions of the operators, both operands, and the operator itself, are 
required to have the same size (single, double, or extended-double precision), and the result has that 
size. 

Syntax 

additive-expression: 

   multiplicative-expression 

   additive-expression + multiplicative-expression 

   additive-expression - multiplicative-expression 

   additive-expression float+ multiplicative-expression 

   additive-expression float- multiplicative-expression 

Semantics 

The + and – operators, with no suffix, implement unsigned integer addition and subtraction. The +# 

and -# operators implement the signed version of the operation. If an operand requires extension, 

 

1 % implements a remainder operation, and not a modulus operation. / and % have the same definition in Maia and C,  although 

% is sometimes referred to as the 'modulus' operator in C.  % is equivalent to the MOD function in Fortran 90, and the rem 

operator in Common Lisp, Ada, and VHDL. 
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then the unsigned operators will zero-extend that operand, while the signed operators will sign-extend 
that operand. The results of the unsigned and signed integer operations are otherwise identical. 

4.5.9 Shift and rotate operators 

The shift and rotate operators implement bitwise left and right shift, and bitwise left and right rotation. 

Both operands are required to have arithmetic type. 

Syntax 

shift-expression: 

   additive-expression 

   shift-expression <<  additive-expression 

   shift-expression >>  additive-expression 

   shift-expression .R<< additive-expression 

   shift-expression .R>> additive-expression 

Semantics 

The <<, >>, .R<<, and .R>> operators, with no suffix, implement the unsigned versions of the 

operation. The same operators with a # suffix implement the signed versions of the operations. The 

unsigned and signed operations differ as follows: 

1 If the left operand requires extension (4.4.1), then the unsigned operators will zero-extend that 
operand, while the signed operators will sign-extend that operand; 

2 The >> operator carries out a logical shift (by shifting in 0), while >># carries out an arithmetic 

shift (by duplicating the sign bit). The remaining shift and rotate operators have the same 
behaviour, irrespective of whether or not they have a # suffix. 

The result of E1 << E2 is E1 left-shifted E2 bit positions; the vacated bits are filled with zeroes. 

The result of E1 >> E2 is E1 right-shifted E2 bit positions. The vacated bits are filled with zeroes for 

the unsigned operator, or with a copy of the top bit of E1 for the signed operator. 

The result of E1 .R<< E2 is E1 left-rotated E2 bit positions. Rotation occurs within a word whose size 

is given by the size of the operator (4.4.1). If E1 requires extension, then it will be zero-extended to 

the operator size if the operator is unsigned, or sign-extended to the operator size if the operator is 
signed, before the rotation is carried out. 

The result of E1 .R>> E2 is E1 right-rotated E2 bit positions. Rotation occurs within a word whose 

size is given by the size of the operator (4.4.1). If E1 requires extension, then it will be zero-extended 

to the operator size if the operator is unsigned, or sign-extended to the operator size if the operator is 
signed, before the rotation is carried out. 

4.5.10 Relational operators 

The relational operators implement integer and floating-point comparisons. Both operands are required 

to have arithmetic type. 

When using the floating-point versions of the operators, both operands, and the operator itself, are 
required to have the same size (single, double, or extended-double precision). 
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Syntax 

relational-expression: 

   shift-expression 

   relational-expression  <  shift-expression 

   relational-expression  >  shift-expression 

   relational-expression  <=  shift-expression 

   relational-expression  >=  shift-expression 

   relational-expression float-compare shift-expression 

Semantics 

The operators return a result of type bool; the result is true if the specified relationship is true, and 

false otherwise. 

The > (greater than), < (less than), >= (greater than or equal), and <= (less than or equal) operators, 

with no suffix, implement the unsigned integer comparisons. The >#, <#, >=#, and <=# operators 

implement the signed integer comparisons. The unsigned and signed versions of the operators differ as 
follows: 

1 If an operand requires extension, then the unsigned operators will zero-extend that operand, 
while the signed operators will sign-extend that operand; 

2 The unsigned operators assume that their operands are unsigned binary, while the signed 
operators assume that their operands are 2's complement. This affects the operator result, as 
shown in the examples below. 

If the operands contain any metavalues, all four relationships will be false (3.7.7.4). Otherwise, at least 
one of the relationships will be true. 

Examples 

var4 r1, r2; 

r1 = 0b1001;      // 9 or -7 

r2 = 0b0011;      // 3 

assert(r1 >  0);     //  9 > 0 

assert(r1 <# 0);     // -7 < 0 

assert(r1 >  r2);    //  9 > 3 

assert(r1 <# r2);    // -7 < 3 

Example 50 

The size of the relational operators is defined by the normal operator sizing rules (4.4.1), and 

determines the number of bits of the operands which will be compared: 

var4 r1 = 0b0110; 

var4 r2 = 0b1000; 

assert(r1 >$3 r2);    // 6 > 0 

assert(r1 <$4 r2);    // 6 < 8 

Example 51 

4.5.11 Equality operators 

The equality operators determine whether or not their operands have the same value. One of the 
following 3 conditions must hold: 
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1. both operands must be of the same type, where that type is int, var, kmap, or bool; or 

2. both operands must be assignment-compatible structures (3.7.10.2); or 

3. both operands must be assignment-compatible arrays (3.7.12.4). 

The equality operators carry out a bitwise comparison, and so may be used for both integer and 
floating-point comparisons. 

Syntax 

equality-expression: 

   relational-expression 

   equality-expression == relational-expression 

   equality-expression != relational-expression 

Semantics 

The equality operators are analogous to the relational operators, but have a lower precedence, and 
may be used to test K-maps, booleans, structures and arrays for equality. They return a result of type 
bool; the result is true if the specified relationship is true, and false otherwise. 

If the operands contain any metavalues, then those metavalues are included in the test (3.7.7.5). For 
any pair of operands, exactly one of the relationships is true. 

4.5.12 Bitwise AND operator 

The & operator returns the bitwise AND of the two operands, as defined in (3.7.7.6). Both operands are 

required to have data type. 

Syntax 

AND-expression: 

   equality-expression 

   AND-expression & equality-expression 

4.5.13 Bitwise exclusive OR operator 

The ^ operator returns the bitwise exclusive-OR of the two operands, as defined in (3.7.7.6). Both 

operands are required to have data type. 

Syntax 

exclusive-OR-expression: 

   AND-expression 

   exclusive-OR-expression ^ AND-expression 

4.5.14 Bitwise inclusive OR operator 

The | operator returns the bitwise inclusive-OR of the two operands, as defined in (3.7.7.6). Both 

operands are required to have data type. 

Syntax 

inclusive-OR-expression: 

   exclusive-OR-expression 
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   inclusive-OR-expression | exclusive-OR-expression 

4.5.15 Logical AND operator 

Both operands are required to be boolean. An operand of an arithmetic type is considered to be 

boolean; see (3.7.4.2). 

Syntax 

logical-AND-expression: 

   inclusive-OR-expression 

   logical-AND-expression && inclusive-OR-expression 

Semantics 

The && operator return a result of type bool. E1 && E2 yields true if both E1 and E2 are true, and 

false otherwise. E2 is not evaluated if E1 is false. 

4.5.16 Logical OR operator 

Both operands are required to be boolean. An operand of an arithmetic type is considered to be 
boolean; see (3.7.4.2). 

Syntax 

logical-OR-expression: 

   logical-AND-expression 

   logical-OR-expression || logical-AND-expression 

Semantics 

The || operator return a result of type bool. E1 || E2 yields true if either E1 or E2 is true, and 

false otherwise. E2 is not evaluated if E1 is true. 

4.5.17 Conditional operator 

The first operand is required to be boolean. An operand of an arithmetic type is considered to be 
boolean; see (3.7.4.2). The second and third operands may be of any type, but must be assignment-
compatible. 

Syntax 

conditional-expression: 

   logical-OR-expression 

   logical-OR-expression ? expression : conditional-expression 

Semantics 

For the expression E1?E2:E3, E1 is evaluated first. E2 is evaluated only if E1 is true; E3 is evaluated 

only if E1 is false. The result has the value of whichever of E2 or E3 was evaluated. 

If E2 and E3 are of an arithmetic type, and one or more of them is of type var, then the result is of 

type var; otherwise, the result is of type int. E2 and E3 must otherwise be of the same type, and the 

result is of that type. 
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4.5.18 Assignment operators 

The assignment operators write a source location (an rvalue) to a destination location (an lvalue). The 

left operand must be an lvalue. The left and right operands must be assignment-compatible. 

Syntax 

constant-assignment-expression : 

   assignment-expression 

 

assignment-expression : 

   conditional-expression 

   unary-expression assignment_operator assignment-expression 

 

assignment_operator: one of 

   = *= /= %= += -= <<= >>= .R<<= .R>>= &= ^= |=  

Semantics 

An assignment expression has the value of the left operand after the assignment, but is not an lvalue. 
The type of the expression is the type of the left operand. 

A constant-assignment-expression must have a known value during compilation. 

An assignment is a compound assignment if it is of the form op=; it is otherwise a simple assignment. 

The compound assignment E1 op= E2 is equivalent to E1 = E1 op (E2). 

A simple assignment may optionally be sized or signed, or both. A size modifier specifies the number of 
bits which will be copied from the source location, while the absence or presence of a # modifier 

specifies whether these bits should be zero-extended or sign-extended, respectively. The compound 
assignments, however, may not be signed or sized, because of the potential confusion over whether 
the modifiers refer to the base operator, or to the assignment. 

An assignment is evaluated by following this procedure: 

1 the operation size (4.4.1) is first determined. For assignment, the operation size is the size of the 
assignment operator, if it is explicitly sized, and is otherwise the size of the source operand. 

2 If the operation size is less than the source size, the source data is truncated to the operation 
size. Otherwise, if the operation size is greater than the source size, the source data is zero-
extended to the operation size for an unsigned assignment (=), or sign-extended to the operation 

size for a signed assignment (=#). 

3 The resized source data is then written to the destination. If the resized data is wider than the 
destination, it is truncated to the destination size; if it is narrower than the destination, it is zero-
extended to the destination size for an unsigned assignment, or sign-extended to the destination 
size for a signed assignment. The entire destination is always over-written. 

The bitslice operator (4.5.4.5) should be used if it is necessary to leave some bits of the destination 
unmodified. 

The assignment operator is best viewed as a hardware logic unit, which contains, and controls writes 
to, a memory location. The unit has a fixed-size input bus, where the size of the bus is given by the 
operation size. The input to the logic unit is found by truncating, or extending, the operand to the size 
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of the input bus. The unit always overwrites the entire memory location from the input bus, truncating 
or extending the input bus as necessary. 

This is illustrated in the diagram below, which shows a simple 2-input addition operation.  In this 
example, a 5-bit adder adds a 4-bit and a 3-bit register, both of which are zero-extended. The 5-bit 
output is then sign-extended and written to a 6-bit register. The corresponding Maia code is: 

var4 A; 

var3 B; 

var6 C; 

C =# A +$5 B; 

Example 52 

The assignment in this example is unsized, but the operand is 5 bits, so the assignment operation size 
is also 5 bits. The 5-bit result of the addition operation is then sign-extended to 6 bits when written to 
the destination. The corresponding circuit is: 
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Figure 2: assignment input extension 

Examples 

var6 d; 

var2 e = 2; 

 

d =$4  6`h3f;  assert(d == 6`h0f); 

d =#$3 6`h0b;  assert(d == 6`h03); 

d =#$4 6`h0b;  assert(d == 6`h3b); 

d =$8  0xff;   assert(d == 6`h3f); // note that no error is reported 

d =    2`b10;  assert(d == 6`h02); 

d =#   2`b10;  assert(d == 6`h3e); 

d =    e;     assert(d == 6`h02); 

d =#   e;     assert(d == 6`h3e); 

 

int4 f = 4`b1001; 

d =    f;     assert(d == 6`h09); 

d =#   f;     assert(d == 6`h39); 

d =$5  f;     assert(d == 6`h09); 

d =#$5 f;     assert(d == 6`h39); 

Example 53 
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4.5.19 Comma operator 

Syntax 

constant-expression : 

   expression 
 

expression : 

   assignment-expression 

   expression , assignment-expression 

Semantics 

The left operand of a comma operator is evaluated as a void expression. The right operand is then 
evaluated; the result has the type and value of the right operand. 

A constant-expression must have a known value during compilation. 

4.6 Floating-point operators and expressions 

4.6.1 Introduction 

Maia provides floating-point arithmetic, comparison, and cast operators. Each operator is preceded by 

.F, and has a different version for IEC 60559 single-precision, double-precision, and extended double-

precision operands1. These three sizes are identified by the suffixes 1, 2, and 3, respectively. The three 
addition operators, for example, are .F1+, .F2+, and .F3+. 

These operators are essentially equivalent to hardware floating-point units. The .F1+ operator, for 

example, takes two single-precision operands, and returns a single-precision result. It is the 
programmer's responsibility to ensure that the operands are appropriate. There are no dedicated 
floating-point data types, and any data object may be used as an operand to a floating-point operator, 
as long as it is correctly sized. From a hardware perspective, this is analogous to allowing any 64-bit 
memory location to be connected to a 64-bit floating-point adder; the result returned by the adder will 
make little sense if the input memory locations do not actually contain floating-point data. 

While this is the obvious way to handle hardware descriptions, it is not how most general-purpose 
programming languages (or HDLs) operate. Consider, for example, this C program2: 

#include <stdio.h> 

int main(void) { 

   double a = 2; 

   double b = 3 * a; 

   printf("3a is %3.1f (%lx)\n", b, *(long *)&b); 

   return 0; 

} 

Example 54 

 
1 Verilog supports only a 64-bit real type, which corresponds to double-precision on all supported systems. The Verilog code 
generator therefore does not support float and double-extended precisions; see (A4.7.1). 

2 This code assumes that 'long' and 'double' both contain the same number of bits; in general, it will only work on a 64-bit 
machine. Note also that the actual bit pattern in a 'double' variable cannot simply be printed with an 'x' format; various casts are 
required. 
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The Maia equivalent1 is: 

int main(void) { 

   bit64 a = 2.0;    // or declare as real2 (4.6.2) 

   bit64 b = 3.0 .F* a; 

   report("3a is %3.1f (%x)\n", b, b); 

   return 0; 

} 

Example 55 

both programs produce the same output: 

3a is 6.0 (4018000000000000) 

The C compiler has made a number of assumptions about the programmer's intentions. First, it has 
assumed that the constant 2 in the assignment a=2 should actually be the bit pattern 

0x4010000000000000, rather than the bit pattern 0x2. Secondly, for the assignment b = 3*a, the 

compiler has assumed that (since one of the operands is known to be a double) the constant 3 is 

actually the bit pattern 0x4008000000000000, and that a double-precision multiply is required, rather 

than an integer multiply. These are useful assumptions for general-purpose programming problems, but 
are arguably not appropriate for hardware description and testing. 

Maia makes no assumptions about the programmer's intentions. The constants 2.0 and 3.0 must 

therefore be explicitly entered as floating-point values, and not integer values; the multiplication 
operator must also be specified as .F*, rather than simply as a general-purpose *. (3.0 * a), for 

example, carries out an integer multiplication, while (3 .F* a) multiplies the floating-point bit pattern 

in a by the integer 3. In this context, only (3.0 .F* a) produces the expected answer of 6.0. 

The strict requirements that floating-point constants must contain a decimal (or hexadecimal) point, 
and that floating-point operators should be used for floating-point expressions, are relaxed in two 
specific cases (4.6.1.1 and 4.6.1.2). These relaxations simplify the handling of time values. 

(A5) contains an example floating-point program, which calculates  to 15 decimal digits. The program 

is not as concise as one written in a general-purpose language, but Maia is a domain-specific language, 
and will not normally be used for general floating-point arithmetic problems. 

4.6.1.1 Decimal point exception 

Any constant which represents a time value, and which is not part of a larger expression, is interpreted 

as floating-point, whether or not it contains a decimal point. This affects only wait statements and 

times specified in a DUT section. 

DUT { 

   D1 -> posedge C = ( 2:-0.1)  // tSU 2.0; tH -0.1 

   ... 

} 

 

f() { 

   wait 1;          // waits 1.0 time units 

   wait 1.0;         // waits 1.0 time units 

   wait 2.0 .F* 1.5;      // waits 3.0 time units 

 

1 This code assumes that a double contains 64 bits, which is true of all supported systems. 'real2' may be used rather than 
'bit64', to avoid this assumption. 
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   wait 2 .F* 1.5;       // ERROR: '2' is not floating-point in this context 

} 

Example 56 

4.6.1.2 Floating operator exception 

The integer unary plus and minus operators are interpreted as floating-point unary plus and minus 
when they precede a constant which represents a time value: 

DUT { 

   D1 -> posedge C = ( 2.1:-0.1)   // integer unary minus may be used instead of... 

   D2 -> posedge C = ( 2.1:.F-0.1)  // verbose and potentially confusing 

   D3 -> posedge C = ( 2.1:+0.1)   // integer unary plus may be used instead of... 

   D4 -> posedge C = ( 2.1:.F+0.1)  // verbose and potentially confusing 

   ... 

} 

Example 57 

4.6.2 Declarations 

Maia has no floating-point data types, but any objects which are intended to hold float data must be 
correctly sized for that data. On all currently-supported systems, single-precision data is 32-bit, and 
double-precision data is 64-bit. However, extended double-precision may be 64-bit, 80-bit, or 128-bit. 

The real1, real2, and real3 keywords are provided to avoid potential sizing problems; these are 

correctly sized by the compiler for the underlying types. When used in a declaration, these keywords 
are simply syntactic sugar for a correctly-sized variable: 

real1 a;  // equivalent to 'bit32 a' on most systems 

real2 b;  // equivalent to 'bit64 b' on most systems 

real3 c;  // equivalent to 'bit64 c', 'bit80 c', or 'bit128 c' on most systems 

report("real2 is %d bits\n", b'size); 

Example 58 

Note that these declarations do not flag to the compiler that a floating-point value is stored in a, b, or 

c; the compiler has no interest in the contents of a data object. It is the programmer's responsibility to 

track the meaning of any bit pattern in an object. 

4.6.3 Operators 

Table 18, Table 19, and Table 20 below list the floating-point arithmetic operators. These operators 
have the same precedence and associativity as the corresponding integer arithmetic operators. The 
binary arithmetic operators take two operands of the same size, and return a result of that size; the 
comparison operators take two operands of the same size, and return a boolean result. An error will be 
reported if the operands of any of these operators are incorrectly sized. 

The operators have alternative textual names, which are listed in the tables below. If the size numeral 

is omitted, it is assumed to be 2, for double-precision. 

The compound assignment operators are not defined for floating-point data; the += operator, for 

example, carries out an integer addition. 
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Floating-point data may be converted to a different precision, or to and from integer data using the 

cast operators; see (4.5.6). 

Syntax 

float+: one of 

   .F1+  .F2+  .F3+  .F1ADD .F2ADD .F3ADD .F+  .FADD 
 

float-: one of 

   .F1-  .F2-  .F3-  .F1SUB .F2SUB .F3SUB .F-  .FSUB 
 

float*: one of 

   .F1*  .F2*  .F3*  .F1MUL .F2MUL .F3MUL .F*  .FMUL 
 

float/: one of 

   .F1/  .F2/  .F3/  .F1DIV .F2DIV .F3DIV .F/  .FDIV 
 

float-compare: one of  

   .F1<  .F2<  .F3<  .F1LT  .F2LT  .F3LT  .F<  .FLT 

   .F1>  .F2>  .F3>  .F1GT  .F2GT  .F3GT  .F>  .FGT 

   .F1<= .F2<= .F3<= .F1LE  .F2LE  .F3LE  .F<= .FLE 

   .F1>= .F2>= .F3>= .F1GE  .F2GE  .F3GE  .F>= .FGE 

 

Single precision Form 1 Form 2   

Addition, unary + .F1+ .F1ADD   

Subtraction, unary - .F1- .F1SUB   

Multiplication .F1* .F1MUL   

Division .F1/ .F1DIV   

Less than .F1< .F1LT   

Greater than .F1> .F1GT   

Less than or equal .F1<= .F1LE   

Greater than or equal .F1>= .F1GE   

Table 18: single-precision real operators 

Double precision Form 1 Form 2 Form 3 Form 4 

Addition, unary + .F2+ .F2ADD .F+ .FADD 

Subtraction, unary - .F2- .F2SUB .F- .FSUB 

Multiplication .F2* .F2MUL .F* .FMUL 

Division .F2/ .F2DIV .F/ .FDIV 

Less than .F2< .F2LT .F< .FLT 

Greater than .F2> .F2GT .F> .FGT 

Less than or equal .F2<= .F2LE .F<= .FLE 

Greater than or equal .F2>= .F2GE .F>= .FGE 

Table 19: double-precision real operators 
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Double extended Form 1 Form 2   

Addition, unary + .F3+ .F3ADD   

Subtraction, unary - .F3- .F3SUB   

Multiplication .F3* .F3MUL   

Division .F3/ .F3DIV   

Less than .F3< .F3LT   

Greater than .F3> .F3GT   

Less than or equal .F3<= .F3LE   

Greater than or equal .F3>= .F3GE   

Table 20: double extended precision real operators 
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5 DECLARATIONS 

5.1 Introduction 

Syntax 

declaration : 

   ivb-declaration    ; 

   struct-declaration ; 

   stream-declaration ; 

   kmap-declaration   ; 

A declaration specifies the interpretation given to an identifier. A declaration that also reserves storage 
is a definition; a definition creates an object. A definition specifies the type of the object (3.7), and its 
storage duration and initialisation (3.5). 

If the value of _StrictChecking is greater than 0, there must be exactly one declaration for every 

unique identifier1 in a given scope (3.3) and namespace (3.4). 

If the value of _StrictChecking is 0, scalar variables inside a function do not require an explicit 

declaration (3.1.1). These objects are created when they are first written to, and are implicitly declared 
to be of type var, with automatic storage duration. No initialisation is defined for these objects, since 

they are created only when explicitly written to. 

The general form of the declarations of all objects is the same. However, the declaration of a structure 
or stream may simply declare a new type, rather than an object, and these declarations are therefore 
listed separately in (5.5) and (5.6). The initialiser for a K-map has a unique form, and K-map 
declarations are therefore listed separately in (5.7). 

5.2 Array dimensionality 

Syntax 

array-dimensions : 

   array-dimensionsA 

   array-dimensionsB 

 

array-dimensionsA : 

   dimensionA 

   array-dimensionsA dimensionA 

 

dimensionA : 

   [ constant-assignment-expressionopt ] 

 

array-dimensionsB : 

   [ commaopt constant-expressionopt ] 

When declaring an array (3.7.12), the dimensionality may be specified as part of the type, or following 
the object name, or both; see (3.7.12.2). 

 

1 The declaration for an identifier which is a (non-foreign) function name occurs as part of the function definition. 
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The dimensionality may further be specified in two different forms. In the first form (array-

dimensionA) the dimensionality is specified as a list, with each dimension in its own [] brackets. In 

the second form (array-dimensionB) (3.7.12.3), the dimensionality is specified as a comma-

separated list in a single pair of [] brackets. 

When declaring an array, the first dimension expression may be omitted if it can be found from an 
initialiser list: 

int[]     c = {0, 1, 2, 3, 4, 5};      // c is int[6] 

int[][2]  d = {{0,1}, {2,3}, {4,5}};  // d is int[3][2] 

int[,2]   e = {{0,1}, {2,3}, {4,5}};  // e is int[3,2] 

int[,3,4] f;            // ERROR: no initialiser  

Example 59 

It is an error if any dimension expression other than the first is omitted. 

5.3 Initialisation 

Syntax 

init-assignment : 

   = initialiser 

 

initialiser : 

   assignment-expression 

   { } 

   { initialiser-list commaopt } 

 

initialiser-list : 

   initialiser 

   initialiser-list , initialiser 

 

comma : , 

The initialisers for all objects (except K-maps; see (5.7)) have the same form, which is given by init-
assignment. 

An initialiser specifies the initial value of an object. If an object (or any sub-object within an aggregate) 
has no initialiser, then that object or sub-object is given a default initial value (3.6). 

All the expressions in an initialiser for an object which has static storage duration (3.5) must be 

constant expressions. 

The initialiser for a stream is always assigned automatically; if an explicit initialiser is given for a stream 
(or a stream in an aggregate) then that initialiser is ignored. 

The initialiser for a scalar object must be a single expression, optionally enclosed in braces. The 
initialiser for a single K-map may also optionally be enclosed in braces. 

The initialiser for a structure or array which has automatic storage duration must be a single expression 
that is an assignment-compatible aggregate (3.7.10.2 and 3.7.12.4), or an aggregate initialiser, as 
discussed below. 
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An aggregate initialiser is a brace-enclosed list of initialisers for the elements of the aggregate. The 
aggregate object is initialised in order, by assigning successive expressions from the initialiser list to 
successive element in the aggregate. Arrays are initialised in increasing subscript order (with the 
rightmost subscript cycling fastest), and structures are initialised in member declaration order. 

 If an aggregate contains sub-aggregates, then the initialiser list may omit initialisation of a sub-
aggregate (by leaving the corresponding initialiser expression blank), or may specify a sub-aggregate 
initialiser in braces. Initialisation therefore occurs recursively down through any braces in the initialiser. 
An array of rank n therefore requires n brace levels for complete initialisation, if the array elements are 
scalar objects. 

If the initialiser for an aggregate expires before the aggregate is completely initialised, then the 
remaining members of the aggregate are given default initialisations (3.6). 

Examples 

If aggregate sub-objects are to be initialised, the braces must be fully specified1: 

1  struct x { 

2     int a, b; 

3  }; 

4 

5  int main(void) { 

6     int c[6] = {0, 1, 2, 3, 4, 5};                                       // Ok  

7 

8     struct x d[6] = {0,1, 2,3, 4,5, 6,7, 8,9, 10,11};                    // ERROR 

9     struct x e[6] = {{0,1}, {2,3}, {4,5}, {6,7}, {8,9}, {10,11}};        // Ok 

10  

11    int f[2][3] = {0, 1, 2, 3, 4, 5};                                    // ERROR 

12    int g[2][3] = {{0, 1, 2}, {3, 4, 5}};                                // Ok 

13 

14    struct x h[2][3] = {{0,1}, {2,3}, {4,5}, {6,7}, {8,9}, {10,11}};     // ERROR 

15    struct x i[2][3] = {{0,1, 2,3, 4,5}, {6,7, 8,9, 10,11}};             // ERROR 

16    struct x j[2][3] = {{{0,1}, {2,3}, {4,5}}, {{6,7}, {8,9}, {10,11}}}; // Ok 

17    return 0; 

18 } 

Example 60 

The initialisers for objects with static storage duration (external and static objects) must be constant 
expressions: 

int foo(void) { return 41; } 

void bar() { 

   static struct s1 { 

      int x, y; 

   } a = {foo(), 42};             // error: initialiser must be constant 

   struct s1 b = {foo(), 42};     // Ok 

} 

Example 61 

 

1 Aggregate initialisation is, in practice, essentially identical to aggregate initialisation in C, except that conditions which are 
generally flagged as warnings in C compilers (such as misaligned braces) are reported as errors in Maia. For this example, gcc 
warns about missing braces on lines 8, 11, 14, and 15, while g++ warns about missing braces on lines 8, 11, and 15, and 
reports an error on line 14. Maia reports errors for all of lines 8, 11, 14, and 15. 
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5.4 int, bit, var, and bool 

Syntax 

ivb-declaration : 

   storage-classopt typespec-ivb object-list 

 

storage-class : 

   static 

 

typespec-ivb : 

   typemark-ivb array-dimensionsopt 

 

typemark-ivb : one of 

   int bitn ubit varn uvar bool 

 

object-list : 

   object-item 

   object-list , object-item 

 

object-item : 

   identifier array-dimensionsopt init-assignmentopt 

  & identifier array-dimensionsopt = identifier  

An ivb-declaration declares an object of a boolean or arithmetic type, or an array of these objects, for 
the first form of object-item. The second form instead declares a reference to such an object or array 
of objects; see (5.8). 

5.5 struct 

Syntax 

struct-declaration : 

   struct-named-instance 

   struct-tdecl 

   struct-tdecl-with-objects 

 

struct-named-instance : 

   storage-classopt typespec-struct object-list  

 

typespec-struct : 

   struct identifier array-dimensionsopt 

 

struct-tdecl : 

   struct { declaration-listopt }  

   struct identifier { declaration-listopt }  

 

declaration-list : 

   declaration 

   declaration-list declaration 

 

struct-tdecl-with-objects : 

   storage-classopt struct-tdecl array-dimensionsopt object-list  
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A struct-tdecl declares a new structure (3.7.10) type. A structure is an aggregate type, and consists of 
a sequence of members, each of which may itself be of an arbitrary type. A structure may not, 
however, contain an instance of itself. 

If object-list is present, the declaration declares either an object or an array of objects, or a reference 
to such an object or array, according to the form of object-item. 

5.6 stream 

Syntax 

stream-declaration : 

   stream-named-instance 

   stream-tdecl 

   stream-tdecl-with-objects 

 

stream-named-instance : 

   storage-classopt typespec-stream object-list  

 

typespec-stream : 

   stream identifier array-dimensionsopt 

 

stream-tdecl : 

   stream { stream-defn-listopt } 

   stream identifier { stream-defn-listopt } 

 

stream-defn-list : 

   stream-defn 

   stream-defn-list stream-defn 

 

stream-defn : 

   mode   constant-expression  semicolonopt 

   file   string               semicolonopt 

   format string name-listopt   semicolonopt 

 

name-list : 

   identifier 

   name-list , identifier 

 

stream-tdecl-with-objects : 

   storage-classopt stream-tdecl array-dimensionsopt object-list 

A stream-tdecl declares a new stream (3.7.11) type. struct and stream declarations have the 

same form, except that a stream declaration contains the attributes of a named file, rather than a 

collection of members. 

All three attributes (mode, file, and format) must be present in a stream declaration, and may occur 

in any order. 

If object-list is present, the declaration declares either an object or an array of objects, or a reference 

to such an object or array, according to the form of object-item. 
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5.7 kmap 

Syntax 

kmap-declaration : 

   storage-classopt typespec-kmap kmap-object-list 

 

typespec-kmap : 

   kmap array-dimensionsopt 

 

kmap-object-list : 

   kmap-object-item 

   kmap-object-list , kmap-object-item 

 

kmap-object-item : 

   identifier array-dimensionsopt kmap-initialiseropt 

 & identifier array-dimensionsopt = identifier  

 

 

kmap-initialiser : 

   = kmap-init 

 

kmap-init : 

   kmap-const-list 

   { } 

   { kmap-init-list commaopt } 

 

kmap-const-list : 

   kmap-constant 

   kmap-const-list kmap-constant 

 

kmap-constant 

   constant 

   kmap-const 

 

kmap-const : one of 

   x X z Z  

 

kmap-init-list : 

   kmap-init 

   kmap-init-list , kmap-init 

The first form of kmap-object-item declares a kmap object (3.7.8), or an array of such objects. The 
second form instead declares a reference to such an object or array of objects; see (5.8). 

A kmap initialiser is composed of a list of constants, rather than assignment expressions, and so has 
the form kmap-initialiser (rather than init-assignment). A kmap declaration otherwise has the same 
form as the declaration of an object of any other type. 

For the purposes of initialisation, a kmap is regarded as a scalar object. The initialiser for this scalar is a 
kmap-const-list, which is a whitespace-separated list of constants or the characters x, X, z, or Z.  Any 

constants in the list must have one of the values 0 or 1.  
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5.8 References 

A reference is an alternative name for an object. A reference is not itself an object; it is simply an alias 
for an existing object. Any operation which is applied to a reference is carried out on the underlying 
object, rather than on the reference itself. References may be used to implement pass-by-reference 
semantics, or simply to create a more convenient name for an object. 

References may only be created for a complete object. It is not possible to create a reference to a 
bitfield of an object, or to a structure or stream field, or to elements within an array. However, 
references may be created for an entire structure, stream, or array object. A given object has a primary 
name, which is the name it was given in its declaration, and may have any number of additional 
names, or aliases.  

A reference is introduced with the & character. The notation &X denotes X as a reference to an object. 

A reference must be bound to an existing object. This binding is carried out in one of the two forms 
shown below. 

5.8.1 Reference initialisation (1) 

When declaring the reference, it must bound with an assignment to the name (primary or aliased) of an 
existing object: 

int  i = 42;                   // an object with primary name i 

int  j = 43;                   // an object with primary name j 

int &k = i;                    // k is an alias for i 

int &l = k, &m = j;            // l is another alias for i; m is an alias for j 

k = 44; 

report("%d %d %d %d %d\n", i, j, k, l, m); // prints '44 43 44 44 43' 

Example 62 

The initialisation is not an assignment operation; it simply identifies the object to be bound to the 
reference. Note that: 

1 The object that is bound to must be visible in the scope of the declaration 

2 The type of the reference must be exactly the same as the type of the primary object 
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5.8.2 Reference initialisation (2) 

A function formal parameter may be declared as a reference and does not require explicit initialisation. 

The formal is bound to any actuals at run time: 

void fn1(int &a) {                      // pass by reference 

   a += 5; 

   fn2(a); 

} 

 

void fn2(int &b) {                      // pass by reference 

   b += 5; 

} 

 

void main() { 

   int  i = 42; 

   int  j = 43; 

   int  k = 44; 

   int &x = k; 

 

   fn1(i);                              // fn1/2 assign to object i 

   fn1(j);                              // fn1/2 assign to object j 

   fn1(x);                              // fn1/2 assign to object k 

   report("%d %d %d %d\n", i, j, k, x); // prints '52 53 54 54' 

} 

Example 63 

The type of the reference parameter must again exactly match the type of the primary object. Section 
(7.3) discusses the difference between call-by-value and call-by-reference semantics. 
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6 STATEMENTS 

6.1 Introduction 

Syntax 

statement : 

   statementA 

   statementB 

 

statementA : 

   compound-statement 

   selection-statement 

   iteration-statement 

   jump-statement 

   trigger-statement 

   wait-statement 

   exec-statement 

   exit-statement 

   assert-statement 

   report-statement 

   label : statementA 

 

statementB : 

   expression-statement 

   drive-statement 

   label : statementB 

 

label : identifier 

A statement specifies an action to be performed. Except where indicated otherwise, statements are 
executed in sequence. 

Statements may optionally be preceded by an identifier and a ':', where the identifier labels the 

statement. The default label has special significance, and may not be used outside a switch 

statement. Labels may be used to disambiguate drive statements (6.8), but otherwise have no 
significance1. 

Statements are divided into two groups (statementA and statementB). This division has no 

significance, other than to define the statements which may follow an if statement or a while 

statement, when the controlling expression for that if or while is not enclosed in parentheses. If the 

parentheses are omitted, the following statement must be a statementA; if they are included, the 

following statement may be any statement. 

Simulation time may be advanced only by executing a wait statement, or a drive statement; all other 
statements execute in zero time. Expression evaluation order is completely defined, and any expression 
which includes time-consuming function calls always has a defined result.   

 

1 C allows a label to be the destination of a goto statement. 
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6.2 Compound statement 

Syntax 

compound-statement : 

      { block-item-listopt } 

 

block-item-list : 

   block-item 

   block-item-list block-item 

 

block-item : 

   declaration 

   statement 

A compound statement groups a set of declarations and statements together as a single syntactic unit. 
For values of _StrictChecking above 0, the opening { introduces a new scope level. 

6.3 Expression and null statements 

Syntax 

expression-statement : 

   expressionopt ; 

An expression statement is evaluated as a void expression for its side-effects. 

A null statement (consisting of just a ;) performs no operations. 

6.4 Selection statements 

The selection statements select between groups of statements depending on the value of a controlling 

expression. 

Syntax 

selection-statement : 

   if   expression    statementA 

   if   expression    statementA else statement 

   if ( expression )  statement 

   if ( expression )  statement  else statement 

   switch expression { switch-bodyopt } 

 

switch-body : 

   labelled-statement-switch 

   switch-body labelled-statement-switch 

 

labelled-statement-switch : 

   case constant-expression : block-item-list 

   default : block-item-list 
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Semantics 

Parentheses may optionally be placed around the controlling expression if desired1. However, there is a 
potential parsing ambiguity for the if and if-else statements if the parentheses are omitted, and 

the associated statement is therefore required to be statementA (a subset of statement) in this 

case. In other words, if the parentheses are omitted, the associated statement may not be a single 
expression statement, or a single drive statement. 

6.4.1 The if statement 

The controlling expression must be of boolean type.  

If the controlling expression evaluates true, the associated statement is executed; if it evaluates false, 
the associated statement is not executed. 

6.4.2 The if-else statement 

The controlling expression must be of boolean type.  

If the controlling expression evaluates true, the first statement is executed; if it evaluates false, the 
second statement is instead executed. 

The else clause is associated with the nearest lexically preceding if. 

6.4.3 The switch statement 

The controlling expression must be of arithmetic type. 

There may be at most one default label in the switch statement. A case label expression must be a 

constant expression; the values of the case label expressions must all be unique within a given switch 

statement2. 

If the value of the controlling expression matches one of the case label expressions, control will jump to 
the statement following the matched case label. Otherwise, if there is a default label, control jumps to 
the labelled statement. In both cases, execution will continue until a break statement is encountered, 
or until the end of the switch statement otherwise. 

If there is no default label, and the value of the controlling expression does not match the value of 

any of the case labels, then no part of the switch body is executed. 

The controlling expression and the case labels may be of different types if one is of type var, and the 

other is of type int or bit. In this case, the case label expression is converted to the type of the 

controlling expression, as if by assignment, before comparison with the value of the controlling 
expression. 

 

1 C requires parentheses here. 

2 If a switch statement itself includes one or more other switch statements, then those switch statements may themselves 

have default labels, and may have case label expressions which duplicate the expressions in the first switch statement. 
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6.5 Iteration statements 

The while, do, and for iteration statements execute a loop under the control of a controlling 

expression. The for all statement executes a loop for all values of a control object. 

Syntax 

iteration-statement : 

   while   expression   loop-bodyA 

   while ( expression ) loop-body 

   do loop-body while   expression ; 

   for ( expressionopt ; expressionopt ; expressionopt ) loop-body 

   for all identifier loop-body 

 

loop-bodyA: 

   statementA 

 

loop-body: 

   statement 

Semantics 

The controlling expression of the while, do, and for iteration statements must be of boolean type. 

These statements execute the loop body (loop-bodyA or loop-body) while the controlling 

expression is true; the iteration statement is terminated when the controlling expression evaluates 
false. 

The for all iteration statement executes the loop body for all values of the control object, 

incrementing sequentially from 0. 

6.5.1 The while statement 

The controlling expression is evaluated before each execution of the loop body. 

Parentheses may optionally be placed around the controlling expression if desired1. However, there is a 
potential parsing ambiguity if the parentheses are omitted, and the loop body is therefore required to 
be statementA (a subset of statement) in this case. In other words, if the parentheses are omitted, 

the loop body may not be a single expression statement, or a single drive statement. 

6.5.2 The do statement 

The controlling expression is evaluated before each execution of the loop body. Parentheses may 
optionally be placed around the controlling expression if desired41. 

6.5.3 The for statement 

The statement for(E1; E2; E3) loop-body is evaluated as follows: 

 

1 C requires parentheses here. 
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1 If E1 is present, it is evaluated once, as a void expression. E1 is generally a loop initialisation 

operation. 

2 E2 is then evaluated; it is the controlling expression. If E2 is omitted, it is given the value true. 

If E2 evaluates false, execution continues at the statement after the for statement; if it 

evaluates true, the loop body is executed (step 3). 

3 The loop body is executed; if E3 is present, it is then evaluated as a void expression. Execution 

then resumes at step 2. 

A continue statement in the loop body branches to a point just before E3; in other words, E3 is 

always evaluated after a continue. 

6.5.4 The for all statement 

The statement for all identifier loop-body executes the associated loop body for all values 

of the identifier, starting at 0. The identifier must name an arithmetic object, or a mode 1 stream. If 

the identifier names an arithmetic object, the for all statement is equivalent to: 

   identifier = 0; 

   do { 

      loop-body 

   } while(++identifier != 0); 

Example 64 

The for all statement is primarily useful for iterating over all values of a 'small' variable1, and avoids 

the complexity of handling the wrap-around of the variable, and the use of signed or unsigned 
comparisons in the equivalent loop control expression. 

If the identifier names a mode 1 stream, the for all statement is equivalent to: 

   identifier = 0; 

   do { 

      loop-body 

   } while((++identifier)'offset != 0); 

Example 65 

The for all statement may therefore be used to iterate over all lines of a mode 1 stream 

(3.7.11.1.7). 

6.6 Jump statements 

A jump statement causes an unconditional jump. 

Syntax 

jump_statement : 

   continue constant-expressionopt ; 

   break    constant-expressionopt ; 

 

1 This might be useful, for example, if it is necessary to apply all values of an 8-bit variable to  a DUT. Care should be taken not 
to use a 'large' variable as the loop control variable; the number of loop iterations is 2identifier’size. 
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   return   expressionopt ; 

6.6.1 The continue statement 

The continue statement causes a jump to the loop-continuation portion of an enclosing iteration 

statement. The continue has an associated level, which is given by the optional constant expression, 

and which specifies which enclosing iteration statement should be continued. 

If the level expression is omitted, it defaults to 1. A one-level continue jumps to the end of the loop 

body of the closest enclosing iteration statement1. continue 2 jumps to the end of the loop body of 

the next enclosing iteration statement, and so on. It is an error if the continue level is less than 1, or 

greater than the number of enclosing iteration statements2. 

Examples 

The "loop-continuation portion" of an iteration statement is an implicit null statement at the end of the 

loop body. This null statement is jumped to by a continue: 

while(a()) { 

   if(b()) 

      continue;   // jumps to label1 

   c(); 

   label1: ; 

} 

 

do { 

   if(b()) 

      continue;   // jumps to label2 

   c(); 

   label2: ; 

} while(a()); 

 

for(;;) { 

   if(b()) 

      continue;   // jumps to label3 

   c(); 

   label3: ; 

} 

 

for all x { 

   if(b()) 

      continue;   // jumps to label4 

   c(); 

   label4: ; 

} 

Example 66 

 

1 A continue which has no level specified therefore has the same behaviour as C's continue statement. 

2 It is therefore an error if the continue statement does not appear inside an iteration statement. 
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6.6.2 The break statement 

The break statement causes termination of an enclosing switch or iteration statement. The break 

has an associated level, which is given by the optional constant expression, and which specifies which 
enclosing switch or iteration statement should be terminated. 

If the level expression is omitted, it defaults to 1. A one-level break terminates the closest enclosing 

switch or iteration statement1. break 2 terminates the next enclosing switch or iteration 

statement, and so on. It is an error if the break level is less than 1, or greater than the number of 

enclosing switch and iteration statements2. 

Examples 

This code shows an example of a multi-level continue, and a multi-level break: 

for(;;) { 

   while(true) { 

      if(foo()) 

         continue;    // equivalent to continue 1; jumps to label jumpA 

      if(foo()) 

         continue 2;  // jumps to label jumpB 

      if(foo()) 

         break 2;     // breaks 2 levels; jumps to label jumpC 

      jumpA: ; 

   } 

   if(foo()) 

      break;          // equivalent to break 1; jumps to label jumpC 

   jumpB: ; 

} 

jumpC: ; 

Example 67 

6.6.3 The return statement 

A return statement terminates execution of the current function and returns to the caller. Any 

number of return statements may appear in a function. 

The optional return expression may be used to return a value to the caller. The expression is returned 
as if by assignment to a temporary object which has the declared type of the function; the value of the 
function is the value of this temporary object. It is an error if a function which has been declared to be 
of void type contains any return statements with an associated return expression. 

If a function has a non-void type, and control is returned to the caller by reaching the terminating } or 

by executing a return statement with no associated return expression, then the value returned to the 

caller will be the current value of the predefined result variable. Every non-void function has an 

implicit result variable, which has the same type as the function itself. The result variable is 

default-initialised (3.6) when the function is entered. 

 

1 A break which has no level specified therefore has the same behaviour as C's break statement. 

2 It is therefore an error if the break statement does not appear inside a switch or iteration statement. 
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Examples 

int f1(void) { 

   result = 2;          // f1() returns 2 

} 

int f2(void) { 

   result = 2; 

   return 4;            // f2() returns 4 

} 

int f3(void) { 

   struct s1 res = f4(); 

   assert(res.a == 4'b0000 && res.b == 4'bxxxx); 

   return;              // f3 returns 0 (the default value of result, of type int) 

} 

struct s1 { 

   int4 a; 

   var4 b; 

} 

struct s1 f4(void) {} 

Example 68 

6.7 Trigger statement 

Syntax 

trigger-statement : 

  trigger postfix-expression ( argument-expression-listopt ) trigger-conditionopt ; 

 

trigger-condition : 

   trigger-count expression 

 

trigger-count : one of 

   when 

   when all 

The trigger statement posts a trigger function (7.7) for later execution. The postfix-expression 

must denote a trigger function; the () parentheses contain a possibly empty comma-separated list of 

expressions. These expressions form the actual parameters to the trigger function; the number of 
arguments must agree with the number of formal parameters to the function. The actual parameters 
are sampled when the trigger statement is executed; the sampled values are stored, and are supplied 
to the formal parameters, as if by assignment, when the trigger function starts execution. 

The trigger function starts execution when the expression supplied in trigger-condition is 

sampled true. This expression must be of boolean type, and may be arbitrary; however, it will normally 
be some combination of values at the DUT outputs. The condition when all true can be used to 

initiate the trigger function on every clock cycle. The condition is sampled and acted on as described in 
(9.2.3) and (10.10). 

If trigger-count is specified as when, the trigger function executes only once, when the trigger 

condition is first sampled true. If trigger-count is specified as when all, the trigger condition 

automatically re-arms when the trigger function completes execution; the condition is then checked on 
subsequent sampling clocks. A run-time error is reported if the trigger condition again becomes true 
while the function is running; it is not possible to run multiple instances of the same trigger function. 
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6.8 Drive statement 

Syntax 

vfile-drive-statement : 

   base-drive-statement 
 

drive-statement : 

   base-drive-statement 

   triggered-drive-statement 
 

base-drive-statement : 

   [ hdl-inputs ]  

   [ hdl-inputs ] -> pipe-levelopt [ hdl-outputs ] 
 

triggered-drive-statement : 

   -> [ hdl-outputs ] 
 

pipe-level : 

   constant 

   identifier 

   ( expression ) 
 

hdl-inputs : 

   hdl-expression-list 
 

hdl-outputs : 

   hdl-expression-list 
 

hdl-expression-list : 

   hdl-expression 

   hdl-expression-list , hdl-expression 
 

hdl-expression : 

   assignment-expression 

   drive-directiveopt 
 

drive-directive : one of 

   - .c .C .x .X .z .Z .r .R 

The syntax of the base-drive-statement is shown only for procedural programs (drive-

statement), and not for testvector programs (vfile-drive-statement), for simplicity (1.1). For a 

testvector program, an hdl-expression must be a constant-assignment-expression or a 

directive, rather than an assignment-expression or a directive. 

The optional pipe-level specifies the expected number of pipeline levels (9.2.4) on the hdl-

outputs; it defaults to 1 if it is omitted1. The level may be an arbitrary expression if required (and so 

may change at runtime). If the level is not a constant or an identifier, it must be enclosed in 
parentheses () to avoid parsing ambiguities. 

A drive-directive (9.3) is a single character which specifies an action on an input, an output, or 

both. An empty directive is a don't-care condition, and is equivalent to '-'. 

The drive statement is described in (9). 

 

1 In other words, hdl-inputs set up to a clock edge, and hdl-outputs are generated by the same clock edge. 
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6.9 Wait statement 

Syntax 

wait-statement : 

   wait expression ; 

 

The wait statement causes the currently-executing function to pause execution for the time given by 

the expression. The expression is interpreted as a floating-point number1, in the timescale units 
specified in the DUT section (which default to nanoseconds). 

wait statements may not be used in trigger functions. 

6.10 Exec statement 

Syntax 

exec-statement : 

   exec  function-name ( argument-expression-list ) ; 

 

function-name : identifier 

 

The exec statement creates a new thread (10.5), and initiates execution of the named function in that 

thread. The statement returns immediately (in zero simulation time), and the newly-created thread 
starts execution immediately. 

argument-expression-list must contain at least one actual parameter. The first actual must be the name 

of an int object, which is passed by reference to the new thread function. The new Thread ID is 

returned to the caller. 

6.11 Exit statement 

Syntax 

exit-statement : 

   exit expressionopt ; 

 

The exit statement terminates program execution; the expression is an exit code. If main was 

declared to return an int the exit code is required; otherwise, main must be declared to return void, 

and an exit code must not be supplied. 

The exit code is recorded in the simulation logfile; see Appendix A2 for details. 

 

 

1 Even if it has no decimal point; see (4.6.1.1) 
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6.12 Assert statement 

Syntax 

assert-statement : 

   assert expression ; 

   assert expression report-statement 

 

The assert expression is required to be of boolean type. If the expression evaluates false, an error is 
reported on stdout and in the log file; the error message includes the source file name and line number 
of the failing assert statement. 

The assert expression may optionally be followed by a report statement. If the report statement 

is present, the report message is included as part of the assertion failure output. 

The number of assertion failures which are required to terminate a program is set by a compiler switch; 
see (A4.5). 

6.13 Report statement 

Syntax 

report-statement : 

   report   printf-varargs ; 

   report ( printf-varargs ) ; 

 

printf-varargs : 

   string 

   string , pv-list 

 

pv-list : 

   pv-element 

   pv-list , pv-element 

 

pv-element : 

   assignment-expression  

   string 

The report statement provides formatted output to the console (stdout). The first argument is a 

format string, which specifies how subsequent arguments are converted for output. The number of 
supplied arguments must match the number expected for the format. 

The format is a character sequence, which is composed of zero or more ordinary characters (not %), 

which are copied unmodified to stdout, and conversion specifications. The conversion specifications 
result in the fetching of zero or more arguments, which are written to stdout. 

report is broadly compatible with C's fprintf, with the exceptions noted in (6.13.3). However, 

2021.4 relies on the Verilog simulator to generate output, and different simulators have widely different 
support for formatted output. It is likely that there will be some deviation from this specification, 
depending on which simulator is used (A4.7.2). 

A conversion specification is introduced by the character %. After the %, the following appear, in 

sequence: 
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1. zero or more flags, in any order, which modify the meaning of the conversion specification. 

The +, -, ' ' (space), #, and 0 flags are recognised, but are not implemented in 2021.4; a 

warning is issued if these flags are detected. 

2. An optional minimum field width. If the output has fewer characters than the field width, it is 

padded with spaces on the left. The field width must be a decimal integer. 

3. An optional precision that gives the minimum number of digits to appear for the d, i, b, o, u, 

x, and X conversions, the number of digits to appear after the decimal point character for a, 

A, e, E, and f conversions, the maximum number of significant digits for the g and G 

conversions, or the maximum number of output characters for s conversion. The precision 

takes the form of a period (.) followed by an optional decimal integer; if the integer is 

omitted, it defaults to 0. 

4. An optional length modifier that specifies the size of the argument. 

5. A conversion specifier character that specifies the form of the output. 

6.13.1 Length modifiers 

Length modifiers are required only for arguments which should be interpreted as floating-point 
numbers. The length modifiers and their meanings are (where a "real" conversion specifier is one of f, 

e, E, g, G, a, or A): 

F Specifies that a following real conversion specifier applies to a single-precision float 

D Specifies that a following real conversion specifier applies to a double-precision float 

L Specifies that a following real conversion specifier applies to an extended double-precision float 

If the length modifier is omitted, and the following conversion specifier is a real conversion specifier, 
then the length modifier defaults to D. The Verilog code generator does not support the F and L length 

modifiers, and an error is reported if they are used. 

6.13.2 Conversion specifiers 

The conversion specifiers are listed below. The argument corresponding to the specifier must be an 

arithmetic object, unless noted otherwise. 

s The argument must be a string. If the precision is specified, no more than that many 
characters are output. 

t The time coded in the argument is output as an integer; the current time may be output 
by using _timeNow as the argument. 

T The time coded in the argument is output as a float; the current time may be output by 
using _timeNow as the argument. 

l The argument must be boolean; it is output as the string true, or the string false. 

d,i The argument is assumed to be in 2's complement form, and is output as signed 
decimal; a leading – sign is output if necessary. The precision specifies the minimum 
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number of digits to output; if the argument can be specified in fewer digits, it is 
expanded with leading zeros. The default precision is 1. 

b,o,u, 

x,X 
The argument is output as unsigned binary (b), unsigned octal (o), unsigned decimal 

(u), or unsigned hexadecimal (x and X). The letters abcdef are used for x conversion, 

and ABCDEF for X conversion. The precision specifies the minimum number of digits to 

output; if the argument can be specified in fewer digits, it is padded with leading zeros. 
The default precision is 1. 

f The argument is assumed to be floating-point, and is output in decimal in the style 

[−]ddd.ddd, where the number of digits after the decimal point is equal to the precision 

specification. The precision defaults to 6 if it not specified; if the precision is 0, no 
decimal point character appears. If a decimal point character is output, at least one digit 
will appear before it. The value is rounded to the appropriate number of digits. 

An argument representing an infinity is output as either [-]inf or [-]infinity, 

depending on the simulator. An argument representing a NaN is output as [-]nan or [-

]nan(n-char-sequence), depending on the simulator. 

e,E The argument is assumed to be floating-point, and is output in decimal in the style 
[−]d.ddd edd, where there is one digit (which is nonzero if the argument is nonzero) 

before the decimal-point character. the number of digits after the decimal point is equal 
to the precision specification. The precision defaults to 6 if it not specified; if the 
precision is 0, no decimal point character appears. The value is rounded to the 
appropriate number of digits. 

The E conversion specifier outputs a number with E instead of e introducing the 

exponent. The exponent always contains at least two digits, and only as many more 
digits as necessary to represent the exponent. If the value is zero, the exponent is zero. 

An argument representing an infinity or NaN is output in the same style as the f 

conversion specifier. 

g,G The argument is assumed to be floating-point, and is output in style f or e (or in style 

f or E in the case of a G conversion specifier). The style used depends on the value 

converted; style e (or E) is used only if the corresponding exponent is less than −4 or 

greater than or equal to the precision. 

The precision specifies the number of significant digits. If the precision is zero, it is taken 
as 1. Trailing zeros are removed from the fractional portion of the result; a decimal-point 
character appears only if it is followed by a digit. 

An argument representing an infinity or NaN is output in the same style as the f 

conversion specifier. 

a,A The argument is assumed to be floating-point, and is output in the style [−]0xh.hhhh 

pd. There is one hexadecimal digit (which is nonzero if the argument is a normalized 

floating-point number and is otherwise unspecified) before the decimal-point character, 
and the number of hexadecimal digits after it is equal to the precision. If the precision is 
0, no decimal point character appears. 
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The letters x, p, and abcdef are used for the a conversion, while the letters X, P, and 

ABCDEF are used for the A conversion. 

The exponent always contains at least one digit, and only as many more digits as 
necessary to represent the decimal exponent. If the value is zero, the exponent is zero. 

An argument representing an infinity or NaN is output in the same style as the f 

conversion specifier. 

c The argument is output as a character. 

% A % character is output; no argument is consumed. 

6.13.3 fprintf compatibility 

The conversion specifications are modelled on the conversion specifications defined for the C fprintf 

function1. However, report and fprintf differ in the following areas: 

a) The flags are not implemented in 2021.4 

b) Length modifiers are not required for arithmetic objects which are to be output as integers; 
the fprintf hh, h, l, ll, j, z, t, and L length modifiers are therefore unused. The l and t 

modifiers are reused as conversion specifiers; the remaining modifiers are reported as errors 

c) The fprintf p and n conversion specifiers are not required 

d) The t, T, l, and b conversion specifiers are added, to handle integer time, floating-point 

time, logical, and binary output, respectively 

e) The fprintf * field width, and * precision, are not supported. 

 

1 ISO/IEC 9899:1999 (E), §7.19.6.1 
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7 FUNCTIONS 

7.1 Introduction 

Maia supports user functions (7.5), trigger functions (7.7), and foreign functions (7.8). User functions 
are conventional functions which are executed as part of the normal user-initiated sequential program 
flow, while trigger functions are run automatically, in response to defined trigger conditions. Foreign 
functions are foreign-language routines which may be called as part of the normal program flow. All 
three function types may execute in either zero or non-zero simulation time. 

User and foreign function calls are primary expressions; they may appear anywhere where an 
expression may appear. User functions (of a non-void type) always have a value, whether or not they 

explicitly return data. User functions cannot return object references, and so cannot be lvalues. A non-
void user function which does not return a value has the value of the result variable (3.6). Foreign 

functions must be declared with a void return type, and so do not have a value. 

Trigger functions are posted for later execution using trigger statements (6.7). A trigger statement 
specifies a set of conditions (normally DUT outputs) which are examined on every controlling clock 
edge, and the function, together with its actual parameters, which will be called when the condition is 
found to be true. A return statement in a trigger function simply terminates execution of that function; 
the function may not return data, and may not assign to result, and has no value. 

User functions may be run in a new thread using exec statements (6.10). Any function initiated in this 
way is referred to as a thread function (7.6). Thread functions are simply user functions which have 
been initiated with an exec statement, but they have a number of restrictions which do not apply to 
general user functions, and so are discussed separately here. 

All function names are globally visible.  

7.1.1 main 

If a program includes any functions, then one of these functions must be a user function named main. 

The main function is the program entry point. main must be declared to have either a void or int 

return type if _StrictChecking is greater than 0 (3.1.3), and must have no parameters.  

If main is declared to have an int return type, then the program return value is recorded in the 

logfile; see (6.11) and Appendix A2. 

7.2 Syntax 

function-definition : 

   user-function-definition 

   thread-function-defintion 

   trigger-function-definition 

 

user-function-definition : 

   user-function-typespecopt  

      function-name ( formal-listopt ) { sf-block-item-listopt } 
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user-function-typespec : 

   typespec-ivb 

   typespec-struct 

   typespec-stream 

   typespec-kmap 

 

thread-function-definition : 

   void function-name ( formal-list ) { sf-block-item-listopt } 

 

trigger-function-definition : 

   @ function-name ( formal-listopt ) { tf-block-item-listopt } 

 

function-name : identifier 

 

formal-list : 

   void 

   formal-item-list 

 

formal-item-list : 

   formal-item 

   formal-item-list , formal-item 

 

formal-item : formal-typespec &opt identifier array-dimensionsopt 
 

formal-typespec : user-function-typespec 

 

sf-block-item-list : block-item-list 

 

tf-block-item-list : block-item-list 

The user-function-typespec may be omitted if the _StrictChecking level is 0 (3.1.3). In this 

case, the function return type is uvar. The formal-typespec may similarly be omitted if the 

_StrictChecking level is 0. 

sf-block-item-list and tf-block-item-list are both shown as block-item-list, for 

simplicity. However, there are a number of differences between the statements which may be used in 
user and trigger functions; see (7.7). 

7.3 Parameter passing semantics 

The mechanism by which a parameter is passed to a function is determined by the presence or absence 
of an & (ampersand) character preceding the formal identifier. If no ampersand is present, the function 

receives a copy of the current value of the argument ('call by value'). If an ampersand is present, the 
function instead receives a reference to the argument ('call by reference'). This reference may be used 
to modify the value of the caller's argument, as illustrated by the 'swap' functions in Example 69 below, 
or to read the current value of the caller's argument. 

When a stream object is passed to a function, the function receives a handle to that stream. Passing a 
stream by value therefore has exactly the same effect as passing that stream by reference, and any use 
of '&' is redundant. 
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void main() { 

   int i = 1; 

   int j = 2; 

 

   swap_val(i, j); 

   report("i is %d; j is %d\n", i, j); // reports 'i is 1; j is 2' 

 

   swap_ref(i, j); 

   report("i is %d; j is %d\n", i, j); // reports 'i is 2; j is 1' 

} 

 

void swap_val(int a, int b) { 

   int temp = b; 

   b = a; 

   a = temp; 

} 

 

void swap_ref(int& a, int& b) { 

   int temp = b; 

   b = a; 

   a = temp; 

} 

Example 69 

7.4 Function signatures 

Function names may be overloaded, and are identified, or disambiguated, by the number of parameters 
to the function. A function signature is made up of the name of the function, together with the number 
of formal parameters, using the notation name{nparams}. All function signatures must be unique 

within a program. 

void main() { 

 var a; 

 ... 

 test();             // call function test{0} 

 trigger test(a) when DATA_READY;  // post test{1} for later execution 

} 

 

test() {              // this is test{0} (0 formal parameters) 

 report("test called\n"); 

} 

 

@test(x) {             // this is test{1} (1 formal parameter) 

 report("DATA_READY active; 'x' is %u\n", x);  

} 

Example 70 
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7.5 User functions 

A user function returns no value if it has a void type, or one value otherwise; it may not return a 

reference. It may have zero or more input parameters. A user function with a non-void return type 

returns a value either with a return statement, or by assigning to the predefined result variable. If 

a function returns by using a return statement with no expression, or by reaching the terminating }, 

then the value returned will be the last value assigned to result. result is default-initialised (3.6) 

when the function is entered, so all user functions have a defined default return value. 

User functions do not need to be declared before use. The definition of a user function also serves as 
its declaration. 

Recursion is not supported in 2021.4 (A4.7.4). 

7.6 Thread functions 

A Thread function is any user function which is named as the target of an exec statement. If a 

function name appears as the target of an exec, then it cannot be executed 'conventionally', by using 

its name as part of an expression; it can only be executed as an exec target. 

While user and thread functions are syntactically and semantically identical, there are a number of 
usage restrictions for thread functions. 

Thread functions do not return to the caller, and so must be declared with a void return type. There 

must be at least one formal parameter, and the first formal must be a reference to an integer. When 
the function starts execution, this parameter will contain the new thread ID. This thread ID is also 
returned to the caller: 

void main() { 

   int tid; 

   exec f1(tid); 

   report("%t: started thread %d\n", _timeNow, tid); // "1 ns: started thread 1" 

} 

 

void f1(int& tid) { 

  report("%t: in thread %d\n", _timeNow, tid);       // "1 ns: in thread 1" 

} 

Example 71 

7.7 Trigger functions 

Trigger functions are essentially 'clocked' functions. They are automatically initiated when the run-time 
detects a defined trigger condition (which is normally some combination of values at the DUT outputs) 
at a clock edge. The clock itself must be generated elsewhere. Trigger functions use a special form of 
drive statement (triggered-drive-statement). These drive statements have no inputs, since they are 
responsible only for testing outputs in response to a clock edge: 

 ->[out1, out2, ...outn];   // triggered drive statement: no inputs 
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Trigger functions are syntactically and semantically identical to user functions, apart from the following 

differences: 

1 The name of a trigger function is preceded by an @ character in its definition 

2 Trigger functions may only be posted for later execution via a trigger statement (6.7); they 
cannot be 'called' in the conventional way. Trigger functions therefore have no value and 
cannot be used in expressions. The parameters to a trigger function are sampled when the 
function is posted, and not when the function eventually starts execution. 

3 Trigger functions may not return a value; it is an error to use the result variable or to 

return an expression 

4 Trigger functions may not execute wait statements, and may not post trigger functions; 

user functions can do both 

5 User functions may use any sequential drive statement, but may not use any triggered drive 
statements. Trigger functions may only use one drive statement; this is the appropriate 
triggered drive statement declared in the DUT section (triggered-drive-
declaration) 

6 A user function may call any other user or foreign function. A trigger function may only call 
user or foreign functions that: 

• execute in zero time (in other words, are not time-consuming), and 

• do not execute trigger statements 

A trigger function may advance time only by executing the drive statement associated with that trigger 
function. When a trigger function is initiated, it may execute zero or more of these drive statements 
before terminating. 

7.8 Foreign functions 

HDL routines may be called directly from user code, and must be declared in a foreign function 
declaration, either before or after a call to the routine is encountered in the source code. Only calls to 
Verilog tasks are supported in 2021.4. 

The task must be declared as a foreign function as follows (see foreign-function-decl below): 

1. the return type must be void 

2. output and inout parameters must be declared as references; values are therefore returned by 

reference 

3. input parameters may be declared as references or plain variables 

4. the parameters may optionally be named in the declaration; if so, the name is ignored 

5. the parameters may be of type int, bit, var, or bool. bit and var parameters must be 

correctly sized; int and bool parameters should be declared in the task as 32-bit variables 
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6. the parameters may be declared to be arrays. However, this is not directly supported in Verilog-
2005, and the corresponding task parameter will need to be 'flattened' in the Verilog code. An 
int[2] array in the Maia code, for example, should be declared in the Verilog to have a width of 
[63:0] 

7. the name of the foreign function must be the full hierarchical reference to the task. This will not 
be a valid simple identifier, so must be given as an extended identifier (2.5) 

The example code below calls the 'user' task in the Verilog code. The 'test' module generates two 
instances of the task, which has a 40-bit input, and a 40-bit output which is returned by reference. The 
task simply adds the current value of the genvar parameter, plus 1, to the input, and returns the result. 

This example also illustrates the use of the exec statement to run the two instances in two different 
threads: 

DUT { 

   module test(); 

} 

 

foreign void \test.A[0].user\(var40, var40&); 

foreign void \test.A[1].user\(var40, var40&); 

 

void main() { 

   int tid; 

   exec instance0(tid); 

   exec instance1(tid); 

} 

 

void instance0(int &tid) { 

   var40 r; 

   \test.A[0].user\(40'h01_0000_ffff, r); 

   report("inst %d: r is %x\n", tid, r); 

} 

 

void instance1(int &tid) { 

   var40 r; 

   \test.A[1].user\(40'h01_0000_ffff, r); 

   report("inst %d: r is %x\n", tid, r); 

} 

Example 72: foreign function, Maia code 

module test(); 

   genvar instA; 

 

   generate 

      for(instA=0; instA<2; instA=instA+1) begin : A 

         task user(input [39:0] i, output [39:0] o); 

            begin 

               o = i+instA+1; 

            end 

         endtask 

      end 

   endgenerate 

endmodule 

Example 73: foreign function, Verilog code 
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If the Maia code is saved in 'test.tv', and the Verilog code in 'test.v', then the test can be run as follows: 

$ rtv test.tv test.v 

inst 1: r is 100010000 

inst 2: r is 100010001 

 

Syntax 

foreign-function-decl : 

   foreign void function-name ( ff-formal-listopt ); 

 

ff-formal-list : 

   void 

   ff-formal-item-list 

 

ff-formal-item-list : 

   ff-formal-item 

   ff-formal-item-list , ff-formal-item 

 

ff-formal-item : typespec-ffp &opt identifieropt 
 

typespec-ffp : 

   typemark-ffp array-dimensionsopt 

 

typemark-ffp : one of 

   int bitn varn bool 

 

 

7.9 Inter-function communication 

Concurrent functions may communicate with each other through the use of external variables. A read-
modify-write operation on an external variable is guaranteed to be atomic, as long as it includes no 
suspending statements (10.1). 
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8 DUT SECTION 

8.1 Introduction 

Maia communicates with an external HDL program which describes the DUT (Device Under Test). In 
order to carry out this communication, Maia requires some information about the DUT, and about any 
test vectors (drive statements) which will be used to test the DUT. This information is placed in the 
DUT section. 

A DUT section (DUT-definition) is only required if there are drive statements in the program. There 

may be a maximum of one DUT section, which may appear anywhere where a function is permissible. 

Syntax 

DUT-definition : 

   DUT { dut-declaration-listopt } 

 

dut-declaration-list : 

   dut-declaration 

   dut-declaration-list dut-declaration 

 

dut-declaration : 

   module-declaration           semicolonopt 

   sequential-drive-declaration semicolonopt 

   triggered-drive-declaration  semicolonopt 

   dut-signal-declaration       semicolonopt 

   clock-declaration            semicolonopt 

   enable-declaration           semicolonopt 

   timescale-declaration        semicolonopt 

   timing-constraint            semicolonopt 

  

If the DUT section is present, and the program contains drive statements, then the DUT section must 

include: 

1. one module declaration 

2. one or more drive declarations (sequential or triggered) 

3. zero or more internal DUT signal declarations 

4. zero or more clock declarations 

5. zero or more enable declarations 

6. zero or one timescale declarations 

7. zero or more timing constraint declarations 

The DUT section must contain at least one clock declaration (8.5) if any clocked logic is to be tested. If 
it is only necessary to carry out delta-delay simulations on rising-edge clocked logic, then no timescale 
or timing constraint declarations are required, and the default clock waveform is sufficient. If it is 
necessary to carry out delta-delay simulations on falling-edge clocked logic, then timing constraints 
must be provided to reference the inputs and outputs to the clock falling edge. 
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DUT section declarations may appear in any order; declarations may optionally be semicolon-
terminated. DUT declarations have exactly the same lexical structure as the rest of a Maia program, 
with the following exceptions: 

a) If a module declaration contains a list of parameter values, then the parameter text 
(modparam-text; everything between the #( and ) terminators) is not analysed, and is 

duplicated exactly in the testbench output 

b) Any Verilog-2001 attributes (attribute) are ignored and are copied directly to the 

testbench output, without analysis 

c) Adjacent strings are not concatenated in a DUT section; every occurrence of a sequence of 
characters between double-quote characters (") is a separate token. 

The identifiers in a DUT section (with the exception of labels) must be valid identifiers for the target 
language (dotted-identifier), since they will be duplicated exactly in the testbench output.  

8.2 Module declaration 

A module declaration provides the name of the DUT, and the names, sizes, and directions of its ports. 

The declaration may also be used to provide the values of any parameters required by the DUT. 

If the DUT has a Verilog 2001-style module definition1, then that definition may normally be cut-and-
pasted directly into the Maia code. This Verilog definition of a FIFO module, for example, may be 
entered directly, with no changes, as a Maia module declaration: 

DUT { 

   module fifo                      // unmodified Verilog module definition; reused 

      (input [7:0] in,              // as a Maia module declaration 

      input clk, read, write, reset, 

      output [7:0] out, 

      output full, empty); 

   ... 

} 

Example 74 

Maia understands Verilog port declarations, and ignores the information that it doesn't require (the 

signed, reg, integer and time keywords, the various net_type keywords, attributes, and port 

initialisers). This code implicitly declares 8 external variables which may be used anywhere in the Maia 
code, as if the following explicit external declarations had been made: 

var8 in, out; 

var1 clk, read, write, reset, full, empty; 

If no Verilog module definition is available (the code is VHDL, for example), or if the module definition 
is in a pre-2001 form, then it will be necessary to derive a 2001-style equivalent to place in the Maia 
code (8.2.3). 

If the module definition is parameterised, or if it is necessary to pass parameter values into the 
instantiated module (to override default parameter values in that module), then the module definition 

 

1 Often (incorrectly) known as an 'ANSI-C' style definition 
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will require some modification before being re-used as a Maia module declaration. No changes to the 
HDL source code are required.  

8.2.1 Parameterised modules 

Consider, for example, this Verilog module definition:  

module generic_fifo 

 #(parameter MSB=3, LSB=0, DEPTH=6) 

  (input [MSB:LSB] in, 

   input clk, read, write, reset, 

   output [MSB:LSB] out, 

   output full, empty); 

Example 75 

This is a generic FIFO module, which defaults to 4-bit input and output buses, and a depth of 6 words. 
A generic FIFO cannot be tested; a specific instance of that FIFO must be tested. The Maia declaration 
is essentially an instantiation of a specific instance. To create the instantiation, two things must be 
done: 

1. any parameterised port sizes must be replaced with known sizes; 

2. any parameters required in the module must be passed into the module. 

If it is necessary to test generic_fifo with 16-bit ports, and an 8-word depth, then the following 

module declaration can be used: 

DUT {  

   module generic_fifo 

     #(.MSB(15), .LSB(0), .DEPTH(8)) 

      (input [15:0] in,        // must use '15:0', not 'MSB:LSB' 

       input clk, read, write, reset, 

       output [15:0] out, 

       output full, empty); 

   ... 

} 

Example 76 

The mechanism used to assign parameters is identical to Verilog's "module instance parameter value 

assignment", which is the preferred way to assign values to module parameters in Verilog-2001. 

An @ (U+0040) character may be used to introduce the parameter list, rather than the # character, if 

preferred. This may be necessary if an external preprocessor is used1. If the @( syntax is used, then 

there must be no whitespace between the two characters; if the #( syntax is used, then whitespace 

may be inserted between the two characters. 

The entire parameter list is copied verbatim to the testbench output, with no analysis. The list may 
contain anything which is acceptable to the Verilog simulator. This example shows named association; 
ordered list assignment may be used if preferred. 

 

1 #( will generate an error in a C-compatible preprocessor. 
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8.2.2 Module declaration error checking 

Maia does not analyse the DUT HDL source code, and so cannot confirm that there is no error in the 
module declaration. There are a number of potential errors which will only be caught by the Verilog 
simulator, which may produce a cryptic error message. This will happen in the following cases: 

a) the module declaration contains an incorrect name, port size, direction, or parameter list 

b) any signal declarations contain incorrect names, port sizes, or directions 

Note, however, that port length mismatches may not be reported as errors by the Verilog simulator. 

8.2.3 Module input, output, and inout declarations 

A module port list is a list of input, output, and inout declarations. The list must be enclosed in 

parentheses, and individual items must be separated by commas. 

This list (list-of-port-declarations) is also required for signal declarations (the 'ports' are 

actually internal signals for signal declarations, but the syntax is identical). The list is identical to 
Verilog's list_of_port_declarations1, with the exceptions that the Verilog definition has been 

refactored to remove ambiguities, and the @ syntax is added for parameter lists. 

The full list-of-port-declarations is parsed and checked, but the items which are not required 

are ignored (the attributes, modifiers, initial assignments, and so on). 

Some simple examples of module declarations are given below. 

module test1( 

  input[7:0]   ina, inb,    // two 8-bit input ports 

  input        C,       // a 1-bit input port 

  output[31:0] Q,       // a 32-bit output port 

  inout        d, e, f, g)   // four 1-bit bidirectional ports 

module test2(output Q, input D);    // 1-bit input, 1-bit output, ';' optional 

Example 77 

Note that a comma-separated list of names shares the same direction and port size, which appears at 

the beginning of a sub-list. 

8.2.4 Syntax 

module-declaration :  

 attributeopt module module-identifier module-paramsopt list-of-port-declarations 

 

module : one of 

   module macromodule 

 

module-identifier : videntifier 

 

module-params : 

   @( modparam-text ) 

   #( modparam-text ) 

 

1 IEEE Std 1364-2005, 12.3.4 
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list-of-port-declarations : ( port-declaration-listopt ) 

 

port-declaration-list : 

 port-list-first-item 

 port-declaration-list port-list-next-item 

 

port-list-first-item : 

   attributeopt inout  iodecl-modifiersopt port-identifier 

   attributeopt input  iodecl-modifiersopt port-identifier 

   attributeopt output iodecl-modifiersopt port-identifier 

 

port-list-next-item : 

 , port-list-first-item 

 , port-identifier 

 

port-identifier : 

   videntifier 

   videntifier = constant-expression 

 

videntifier : 

 dotted-identifier 

 string 

 

iodecl-modifiers : 

   iodecl-modifier 

   iodecl-modifiers iodecl-modifier 

 

iodecl-modifier : 

   range 

   modifier 

 

range: [ constant-expression : constant-expression ] 

 

modifier : one of 

   integer reg signed time supply0 supply1 tri tri0 tri1 triand trior uwire 

   wand wire wor 

 

attribute :         see below 

dotted-identifier : see below 

modparam-text :     see below 

The definitions of attribute, dotted-identifier, and modparam-text have been omitted for 

simplicity. attribute is an optional Verilog-2001 attribute, while dotted-identifier is a Verilog 

dotted identifier. modparam-text contains the entire contents of the parameter list, which is copied 

verbatim to the output testbench, without analysis. 

8.3 Drive declaration 

A drive declaration defines the format of any test vectors which will be used in the body of the code. 
The declaration simply lists the signals which are to be driven on the left-hand-side (LHS) of a test 
vector, and the signals which are to be tested on the right-hand-side (RHS) of a test vector. A 'signal', 
in this context, means either a DUT port, or an internal signal within the DUT. 
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This example (a complete testvector-program) shows a simple declaration, and some drive 

statements which use that declaration: 

DUT { 

 module test1(input D1, D2, CLK, output Q) 

 create_clock CLK 

 [D1, D2, CLK] -> [Q]  // the drive declaration 

} 

[0, 1, .C] -> [0]     // drive statement 1 

[1, 0, .C] -> [1]     // drive statement 2 

Example 78 

The declaration is required to allow Maia to determine that, in the first clock cycle, signals D1 and D2 

should be driven with 0 and 1 respectively, signal CLK should be driven with a default clock waveform, 

and signal Q should be tested against 0. 

Any signals used in a drive declaration must themselves be declared elsewhere as a DUT port (8.2.3), 

or as an internal DUT signal (8.4). Any signals on the LHS of a drive declaration must have an input 

or inout direction; any signals on the RHS must have an output or inout direction. 

8.3.1 Syntax 

sequential-drive-declaration : 

   drive-declaration 

   identifier : drive-declaration 

 

triggered-drive-declaration : 

   @ identifier drive-declaration 

   @ identifier { constant-expressionopt } drive-declaration 

 

drive-declaration : 

    [ hdl-inputs-decl ]  

    [ hdl-inputs-decl ] -> [ hdl-outputs-declopt ] 

 

hdl-inputs-decl : videntifier-list 

 

hdl-outputs-decl : videntifier-list 

 

videntifier-list : 

 videntifier 

 videntifier-list , videntifier 

8.3.2 Clocked and combinatorial drive declarations 

A drive declaration is defined as a clocked drive declaration1 if it includes a named signal on the LHS 

which is defined elsewhere as a clock (8.5); it is otherwise combinatorial. 

8.3.3 Sequential and triggered drive declarations 

The drive statements used in user functions (such as main) have a slightly different format to the drive 

statements used in trigger functions. If any drive statements are to be used in a user function, they 

 

1 The term 'clocked' is used in preference to 'sequential' to avoid confusion with the software concept of sequential execution. 
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must be declared as a sequential drive declaration (sequential-drive-declaration) in the DUT section. If 
any drive statements are to be used in a trigger function, they must be declared as a triggered drive 
declaration (triggered-drive-declaration) in the DUT section. 

For the sequential form, the LHS must contain at least one signal. The entire RHS is optional; it may be 
omitted if the drive statement is not required to test anything (if it used simply for internal DUT state 
preload, for example). Sequential drive declarations may be either clocked or combinatorial (8.3.2). 

The triggered form must be preceded by the name of the corresponding trigger function, including the 
@ character. If there is any ambiguity in the function name, a complete signature should be provided 

(with the number of parameters in {} braces). There must be exactly one signal on the LHS, and that 

signal must be declared as a clock (a triggered drive declaration is therefore also a clocked drive 
declaration). 

Some examples of drive declarations and drive statements (6.8) are: 

DUT { 

 ... 

 // sequential drive declarations: 

 [A]                 // declaration 1: just drive A; no testing 

 [A] -> [B]              // declaration 2: drive A, test B 

 [A] -> [B, C]             // declaration 3: drive A, test B and C 

      

     // triggered drive declarations: 

     create_clock D      // D is a clock for the triggered drives 

     @trigfunc{0} [D] -> [E, F] // declaration 4: test E and F 

     @trigfunc{3} [D] -> [G, H] // declaration 5: test G and H 

} 

 

void main() { 

   // drive statements which are matched to declaration 1: 

   [x+y];          // decl 1: drive A with x+y 

 

   // drive statements which are matched to declaration 2: 

   [z] -> [y];        // drive A with z, test B against y 

   [4] -> [];        // drive A with 4, don't test B 

   [4] -> [-];        // drive A with 4, don't test B 

 

   // drive statements which are matched to declaration 3: 

   [x] -> [y,z];       // B: test against y; C: test against z 

   [x] -> [-,z];       // B: no test; C: test against z 

   [x] -> [y,] ;       // B: test against y; C: no test 

} 

 

@trigfunc() { 

   // any drive statements in this trigger function must be matched to declaration 4 

   -> [x+y, 2];       // E: test against x+y; F: test against 2 

} 

 

@trigfunc(int i, int j, int k) { 

   // any drive statements in this trigger function must be matched to declaration 5 

   -> [foo1(), foo2()];    // G: test against foo1(); H: test against foo2() 

} 

Example 79 
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8.3.4 Clocked drives 

A clocked drive declaration includes one clock signal on the LHS. If the DUT has multiple clocks, it will 

require multiple single-clock drive declarations. 

Maia assumes that all the signals on the LHS of a clocked drive (apart from the clock itself) have setup 
and hold requirements to that clock, and that all the signals on the RHS are produced from that clock, 
and can be sampled at some time after the active clock edge (the active clock edge is determined from 
the pipeline delay (9.2.4), and any timing declarations (8.7)). The required input setup and hold times, 
and the required output hold and delay times, are determined from any timing declarations; defaults 
are used if there are no timing declarations.  

A sorted input event list is created for each drive declaration, for all the setup and hold events. When a 

corresponding drive statement is encountered at runtime, it is executed as described in (10.8). 

When the relevant clock edge is encountered during input event processing, it is also used to trigger a 
checker process for each RHS signal. The checker confirms that the signal has the value of the 
corresponding RHS expression at the output delay point, and also confirms that the signal does not 
change at any time outside the window defined by the output hold and output delay times (the stability 
window). It is the checker which is responsible for incrementing the internal test pass and fail counters 
(_passCount and _failCount), and for reporting any DUT failures. The checker runs for one clock 

cycle from the relevant clock edge; it is an error if a timing declaration sets an output hold or delay 
time which does not fit into this timing window.  

The checkers for the various outputs run independently, and two or more failures at the same 
simulation time may be reported in different orders by different simulators, or during different runs with 
a single simulator. This may cause confusion in regression tests in which failures are expected. If this is 
the case, the output should be sorted before comparison1. 

8.3.5 Mixing clocked and combinatorial signals 

The procedure described above cannot be used to test a selection of inputs which are both clocked and 
combinatorial, using a single drive declaration. Consider, for example, this declaration of a simple 
counter with an asynchronous reset: 

DUT { 

 module counter( 

  input  ARST,      // async reset 

         PLD,       // sync preload 

         D,        // input data 

         CLK, 

  output Q) 

 create_clock CLK      // default clock declaration 

 [ARST, PLD, D, CLK] -> [Q] 

} 

Example 80 

 

1 The default error and warning messages from mtv have a simple format, with a file name in field 2, a line number in field 4, a 
time in field 5, and a signal name in field 7. This Unix command will sort the lines of a logfile according to simulation time, with 
identical times sorted according to signal name: 

$ sort –k 5,5n –k 7,7 –o mtv.log.sorted mtv.log    
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Given this declaration, the resulting testbench will treat ARST as a synchronous signal, which will be 

driven some time before the rising edge of CLK. This is likely to lead to a test failure when a test vector 

activates ARST. A failure will be reported if the change in ARST causes the DUT to change Q at any 

time within the expected stability window (between Q's output delay and the next output hold times). 

Maia has no knowledge of whether a DUT input is 'clocked' or 'combinatorial'. The only information it 
has is the drive declaration which, in this case, requests that ARST be tested in the same way as PLD, 

D, and CLK. Since this drive declaration contains a declared clock, Maia treats it as a clocked drive. The 

correct way to test this DUT is to have two drive declarations: 

DUT { 

   module counter(input ARST, PLD, D, CLK, output Q) 

   create_clock CLK      // default clock declaration 

   [ARST] -> [Q]        // async reset testing 

   [PLD, D, CLK] -> [Q]     // synchronous operation testing 

} 

[0] -> [-]          // DUT output unknown; don't test 

[1] -> [0]          // reset the DUT 

[0] -> [0]          // turn off reset before sync testing 

[1, 4, .C] -> [4]       // sync preload of data '4' 

[0, -, .C] -> [5]       // count up 

Example 81 

8.3.6 Combinatorial drives 

A combinatorial drive declaration is one which does not have a declared clock on the LHS. 

Maia creates a 'cycle' time for combinatorial drives by using any relevant timing specifications, if there 
are any, or by using a default value otherwise. Each execution of a corresponding drive statement 
advances by this 'cycle' time.  

There are essentially two choices for driving multiple combinatorial signals within this cycle. In the first, 
the inputs are all driven at the same time, and tested at their individual tOD specifications. In the 

second, the input timing is adjusted such that the outputs should nominally all change at the same 
time, and the outputs are all tested together.  

Maia uses the second scheme. It should be noted that neither scheme is ideal where there are path 
dependencies (in other words, a single input affects multiple outputs, or multiple inputs affect a single 
output), and Maia may automatically relax specific timing constraints if a conflict is present; see the 
discussion on Constraint conflicts (8.9.7). A warning is always issued if a conflict is present. 

8.3.6.1 Combinatorial cycle time 

The combinatorial 'cycle time' is defined as twice the longest tOD parameter among the timing 

specifications which are relevant to this drive declaration. The inputs are driven and the outputs are 
tested in the first tODMAX period, and an additional tODMAX delay is then added before starting the next 

cycle. This recovery period is added to simplify waveform displays.  

Unconstrained input-to-output paths are given a default tOD of 5 time units. If no paths within a drive 

declaration are constrained then all paths will be given the default timing, giving a cycle time of 10 time 
units. In this case, the two alternative drive schemes become identical; the inputs are all driven at the 
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same time, and are all sampled 5 time units later, with a further delay of 5 time units before the start 
of the next cycle. 

8.3.7 Sequential declaration signature 

A DUT declaration may contain any number of sequential drive declarations. Declarations are matched 
up to corresponding sequential drive statements using a signature, which is normally simply a count of 
the number of signals on the LHS and RHS of the declaration. This example is, again, a complete and 
valid program: 

DUT { 

 module test1(input D1, D2, CLK, output Q) 

 create_clock CLK 

 [D1, D2, CLK] -> [Q]   // signature (3:1) 

 [D1, CLK] -> [Q]     // signature (2:1) 

} 

[0, 0, .C] -> [0]      // signature (3:1) 

[0, 1, .C] -> [1]      // signature (3:1) 

[1, .C] -> [1]        // signature (2:1) 

Example 82 

However, it may be necessary to have more than one sequential drive declaration which has the same 
signal count. In this case, the declarations must be distinguished by adding a label (an identifier (2.5)) 
to them. This label must be repeated in the drive statement: 

DUT { 

 module test1(input D1, D2, D3, D4, CLK, output Q) 

 create_clock CLK 

 v1: [D1, D2, CLK] -> [Q] // label v1; signature (v1:3:1) 

 v2: [D3, D4, CLK] -> [Q] // label v2; signature (v2:3:1) 

} 

v1: [0, 0, 0, .C] -> [0]  // signature (v1:3:1) 

v2: [0, 0, 0, .C] -> [1]  // signature (v2:3:1) 

    [0, 1, 0, .C] -> [1]  // ERROR: unknown signature 

Example 83 

8.4 Signal declaration 

A signal declaration declares one or more internal signals inside the DUT. The signal name is a 
videntifier, and may be anything that the back-end simulator recognises as an internal signal 

name. This will normally be a Verilog-style dotted identifier. 

A signal declared in this way is treated identically to a port name declared in a module declaration 
(8.2). The signal is automatically declared as a global identifier, and so may be read or written directly, 
or it may be used in a drive statement. 

When a signal is written to, it is automatically set to the required level inside the DUT using a 'force' 
mechanism. The force disables any other internal drivers on that signal, to allow it to take on the 
required value. The force must be explicitly released by using the .R directive (9.3.3). 

An example of the driving and testing of an internal signal is given in (9.3.3). 
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8.4.1 Syntax 

dut-signal-declaration:  

 signal ( port-declaration-list ) 

8.5 Clock declaration 

A clock declaration allows timing to be specified relative to a clock, and allows the .C directive to create 

a clock waveform to drive a DUT input, or to respond to a clock which is a DUT output. 

create_clock identifies a DUT signal as a clock, and defines the required clock waveform. This 

declaration is required only if the .C directive is used in a drive statement, or if a virtual clock is 

required. A minimal create_clock declaration simply names a clock signal: 

create_clock CLK  // minimal clock declaration, default waveform 

The named signal (CLK, in this case) must be declared elsewhere as a single-bit DUT input or output 

port. If no waveform is specified, a default waveform is used; this is symmetrical, and has a period of 
10ns. The waveform starts and ends at a low level (the 'default level'), and the rising edge occurs after 
a short delay. 

A clock declaration must include exactly one clock name (clock-name). The period, waveform, and 

pipeline specifications are optional. If a waveform is specified, then a period must also be specified. 
There must be a maximum of one period, waveform, or pipeline specification. 

If the clock name is preceded by –name then the clock is a virtual clock. A virtual clock is a clock which 

is not connected to the DUT; it is an error if the virtual clock name is also the name of a DUT port1. 
Conversely, a clock which is declared without –name is a physical clock which connects to a DUT port. 

In this case, it is an error if the physical clock name is not also the name of a DUT port. 

Any constant values in a clock declaration are interpreted as floating-point numbers (4.6.1.1), in the 

units of the declared timescale. The timescale defaults to nanoseconds if it is not specified. 

Lists of time values (sdc-constant) may be either space-separated, or comma-separated, for 

compatibility with other tools. A time may be specified as either a constant, or a constant expression. If 
an expression is used, it must be enclosed in parentheses, to avoid parsing ambiguities (since the 
expression may contain spaces). 

Where create_clock is used to declare the waveform of a clock which is a DUT output, care should 

be taken to ensure that the declaration matches the physical clock. The generated testbench will 
synchronise to the clock produced by the DUT, if necessary (10.6). 

8.5.1 Syntax 

clock-declaration: 

   create_clock clock-item-list 

 

clock-item-list : 

   clock-item 

   clock-item-list clock-item 

 

1 Virtual clocks may be used to drive or sample DUT signals at times which are unrelated to the timing of physical clocks.  
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clock-item : 

   clock-name 

   clock-decl 

 

clock-name : 

  vnameopt videntifier 

  vnameopt { videntifier } 

 

vname : -name 

 

clock-decl : 

    period 

    waveform 

    pipeline 

 

period : -period sdc-constant 

 

waveform : -waveform { list-of-sdc-constants } 

 

pipeline : -pipeline sdc-constant 

 

list-of-sdc-constants : 

   sdc-constant 

   list-of-sdc-constants   sdc-constant 

   list-of-sdc-constants , sdc-constant 

 

sdc-constant : 

   constant 

( constant-expression ) 

8.5.2 Period declaration 

The clock period is specified with –period t. If the period specification is omitted, it defaults to 10; if 

the timescale is also omitted, this is 10 ns. 

The period must be greater than or equal to 2. 

8.5.3 Waveform declaration 

In normal usage, a waveform specification will include exactly two edges. In this case, the edge times 
may increase or decrease: 

create_clock CLK1 -period 30.5 -waveform { 10.2 20.6 } 

create_clock CLK2 -period 20   -waveform { 15 5 } 

Example 84 

The first entry (or, in general, the odd-numbered entries) correspond to rising edges (10.2ns for CLK1, 

and 15ns for CLK2), while even-numbered entries correspond to falling edges (20.6ns for CLK1, and 

5ns for CLK2). 

A waveform may be declared with any even number of edge times, for compatibility with other tools. 

Any timing specifications will be relative to the first two edges in this waveform.  
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A clocked drive statement defines the input and expected output signal behaviour over a single clock 
cycle, as defined by the waveform. In other words, the 'start' of the clocked drive statement occurs at 
the start of the clock waveform. This imposes two further restrictions on clock waveforms. 

8.5.3.1 Input event timing restrictions 

Any specified clock setup and hold times must fit inside the defined waveform. The example code 
below defines a 20ns clock. All events defined by the setup and hold specifications must therefore fit 
into time interval [0,20) ns1: 

timescale ns 

create_clock G period 20 waveform { 5 12 } 

A -> posedge G = (5:-2)   // 5ns setup to the rising edge is valid 

B -> posedge G = (6:-1)  // ERROR: 6ns setup is invalid 

C -> negedge G = (12:1)  // 12ns setup to the falling edge is valid 

D -> negedge G = (13:1)  // ERROR: 13ns setup is invalid 

E -> negedge G = (1:7)  // 7ns hold from the falling edge is valid 

F -> negedge G = (1:8)  // ERROR: 8ns hold is invalid 

Example 85 

An error will be reported during compilation if any setup and hold constraints cannot be met using the 
specified waveform. In this case, the waveform should simply be adjusted to accommodate the 
required setup or hold time. 

8.5.3.2 Output event timing restrictions 

The DUT output events do not have to fit into the time defined by the clock waveform. The reason is 
that Maia starts a checker process when the relevant edge in the clock waveform is encountered; this 
checker runs for one clock period from that edge. The output events must therefore fit into a clock 
period plus the delay to the relevant clock edge. In this case, for clock G declared above, this is the 

interval [5, 25) ns for outputs generated by the rising clock edge, or [12, 32) otherwise. An error will be 
reported during compilation if any output hold or output delay constraints cannot be met using the 
specified waveform. These constraints are unlikely to be violated, unless a drive statement tests 
outputs which are generated on both the clock rising and falling edges, and the delays are long 
compared to the clock period. If this is the case, the single drive declaration should be split into two 
declarations, one of which tests outputs generated from the clock rising edge, while the other tests 
outputs generated from the clock falling edge.  

8.5.4 Pipeline declaration 

The compiler must be able to statically determine the maximum pipeline level of any drive statement. 
This is always possible, unless a drive statement contains a variable pipeline level: 

DUT { 

 module test(input A, B, CLK, output C); 

 create_clock CLK –pipeline 6; 

 [A, B, CLK] -> [C]; 

} 

 

void main() { 

 

1 Square brackets in intervals are inclusive; round brackets are exclusive. The interval [0, 20) therefore includes 0, and 
excludes 20. 
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 int plevel; 

 ... 

 [expr1, expr2, .C] ->plevel [expr3]; 

} 

Example 86 

In this example, plevel can change at runtime, and the compiler cannot determine in advance the 

length of the checker pipeline associated with this drive statement. In this case, the maximum expected 
pipeline size must be specified as part of the clock declaration for the clock associated with the drive 
statement. 

The maximum size is specified with –pipeline; in this case, it is declared to be 6 levels. A run-time 

error will be issued if plevel is found to be greater than 6 whenever this drive statement is executed. 

The compiler can always determine if a pipeline specification is required, and will report an error if it 
has not been supplied. 

8.5.5 Examples 

Some examples of clock declarations are: 

timescale ns 

 

// the clock signals must be declared as single-bit module inputs: 

module test(input A,B,C,D, ...) 

 

// A: symmetrical, default 10ns period, rising edge first 

create_clock A 

 

// B: 25ns period; will only be symmetrical if the resolution is <= 500ps 

create_clock B -period 25 

 

// C: 30.5ns period, with a rising edge at 10.2ns, and a falling edge at 20.6ns 

create_clock testmod.C -period 30.5 -waveform { 10.2 20.6 } 

 

// D: 20ns period, falling edge at 5ns, rising edge at 15ns  

#define PERIOD 20 

create_clock  

  -period PERIOD 

  -waveform { (PERIOD-5 /* = 15ns */) 5 } D 

Example 87 

8.6 Enable declaration 

A bi-directional signal may be driven both by the Maia testbench, and by the DUT, and so is subject to 

possible contention. Contention can always be avoided by instructing the testbench to drive a Z to the 

DUT before enabling the DUT output drivers. However, this can be tedious and error-prone, and the 
process can be automated by declaring a DUT signal as an enable control, using create_enable. 

8.6.1 Syntax 

enable-declaration : 

   create_enable enable-list 
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enable-list : 

   enable-item 

   enable-list , enable-item 

 

enable-item : 

   enable-port enable-port-sliceopt enable-control 

    

enable-port : identifier 

 

enable-port-slice : 

   . ( constant-expression )  

   . ( constant-expression : constant-expression ) 

 

enable-control : 

   ( enable-levelopt control-sig ) 

 

enable-level : ! 

 

control-sig : identifier 

enable-port must be a DUT output or inout; it may not be an internal DUT signal. 

enable-port-slice has the same semantics as a bitslice (4.5.4.5). The indexes must be in range 

for enable-port, and must not overlap with any indexes specified in any other create_enable for 

this enable-port. 

If enable-level is specified as !, then the enabling level is defined as 0. If enable-level is 

omitted, then the enabling level is defined as any non-zero value. The testbench drives enable-port 

only when control-sig has the value of the enabling level. If control-sig has any other value, 

the testbench will tristate enable-port. 

control-sig must be a DUT input or output, or an external variable. 

8.6.2 Manual bidirectional control example 

This code is part of a testbench for a 16-bit by 16-word RAM. The RAM has a bi-directional data bus 
(D), and an active-high data enable (DEN). The RAM tristates D when DEN is 0, and drives D when DEN 

is 1. Read operations are asynchronous. 

DUT { 

   module RAMB_1RW 

       (inout  [15:0] D,  

        input  [ 3:0] ADR, 

        input  CLK, WE, DEN); 

 

   ... 

   create_clock CLK;       // default clock waveform, 10ns period 

   [CLK, DEN, WE, ADR, D]; // clocked write; nothing to test 

   [DEN, ADR, D] -> [D];   // combinatorial data bus read; D appears on both sides 

} 

 

void main() { 

   ... 

   // 1: write data to the RAM 



  

 Page 120/172 

LRM 2.7 © 2008-2021 Maia EDA 

 

   [.C, 0, 1, e1, e2];           // write data e2 to address e1 

 

   // 2: read data from the RAM 

   [1, e3, .Z] -> [e4];     // read data from address e3, test against e4 

} 

Example 88 

During the write operation, the testbench must set DEN to 0, to disable the RAM's output drivers. 

During the read operation, the testbench must set DEN to 1, to enable the RAM's output drivers; it must 

also tristate its own D output drivers, so that it can read back the data driven by the RAM. If the 

testbench accidentally enables both sources (by setting DEN to 1, and driving D with anything other 

than .Z), then it will read invalid data (probably X) from the DUT, and the test will fail. 

8.6.3 Automatic bidirectional control example 

The potential error of (8.6.2) can be avoided by declaring DEN as an enable signal, using 

create_enable: 

DUT { 

   ... 

   create_enable D(!DEN); 

} 

 

void main() { 

   ... 

   // 2: read data from the RAM 

   [1, e3, -] -> [e4];     // read data from address e3, test against e4 

} 

Example 89 

The declaration states that D is a tristate signal, and that the testbench may only drive D when DEN is 

0. When DEN is non-zero, the testbench automatically drives D with Z, ignoring whatever value has 

been requested in the drive statement (in this case, a '–' was specified; this is a don't care condition). 

8.7 Timescale declaration 

The simulation timescale is specified as 

timescale ts 

where ts is one of seconds (s), milliseconds (ms), microseconds (us), nanoseconds (ns), picoseconds 

(ps), or femtoseconds (fs). If no timescale directive is provided, the timescale defaults to ns. There 

may be a maximum of one timescale declaration in the DUT section. The timing resolution is derived 
automatically, as described in (8.8). 

Syntax 

timescale-declaration: 

 timescale timescale-units 

 

timescale-units : one of 

   s ms us ns ps fs 
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8.8 Time precision and representation 

Times are represented as ordinary expressions. Time values are required primarily in the DUT section, 
but are also required for wait statements (6.9) in user functions. Times are not explicitly entered with 

a timescale unit (such as 'ns'); there is instead a timescale declaration which sets the required unit. 

Times may be specified with an arbitrary precision. The compiler deduces the required precision by 
examining all constants in time expressions, and setting the precision to the maximum precision found.  

DUT {               // a minimal DUT section with timing 

 module test(input C, D, output Q) 

 [C, D] -> [Q]          // drive declaration 

 timescale ns          // timescale declaration 

 create_clock C          // clock declaration 

 D -> posedge C = (0.1 : 2.340)   // tSU/tIH 

 posedge C -> Q = (1 : 3.1)    // tOH/tOD 

} 

Example 90 

In this example, the maximum precision is 2 decimal digits (note that trailing zeroes are ignored), 
which is equivalent to a precision of 10ps (assuming that the body of the code does not contain any 
wait statements with a higher timing precision). 

In some circumstances it is possible to specify a timescale and precision which cannot be supported by 

the target simulator (a ns timescale, for example, with 7 decimal digits of precision, is equivalent to a 

timing precision of 0.1 fs, which is not in the range supported by Verilog simulators). The compiler will 
report an error in this case. 

Hex floating-point values may not be used for time values, since the compiler needs to count decimal 
digits. 

All time values in a DUT section must be constants or constant expressions (in other words, expressions 

which can be evaluated during compilation). The time delay in a wait statement must also be a 

constant or a constant expression; a dynamic wait can be achieved by putting a constant wait inside a 
loop. 

A constant expression may include floating-point operations. The calculated precision is not affected by 
floating-point operators; the precision is derived solely from the constants in the code. If a floating-
point operation is used, then care should be taken to ensure that the correct number formats and 
operators are used; (2 * 0.1), for example, is not equal to 0.2. In this case, (2.0 .F* 0.1) 

should be used; see (4.6.1.1) and (4.6.1.2).  

8.8.1 Floating-point values in parameter lists 

In some circumstances it may be necessary to pass floating-point values into a DUT as a parameter in a 

module declaration: 

module test #(.tCO(0.2)) (input A, B, output C); 

In this case, the intention is to pass the number '0.2' as the tCO parameter to the DUT. If the Maia 

timescale is ns, then this might be expected to set a clock-to-out delay of 0.2 ns. Recall, however, that 

module parameter lists are copied direct to the testbench code with no analysis or processing (8.2.1), 
and the number '0.2' will therefore appear verbatim in the DUT instantiation in the testbench code. 
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Furthermore, if the DUT is expecting a floating-point timing parameter, then it will almost certainly 
have its own timescale directive, which will over-ride the timescale directive in the Maia output. In 
summary, then, any floating-point values in a parameter list are ignored by Maia (along with the rest of 
the parameter list), and must be specified in a format which will be understood by the DUT itself. 

8.9 Timing constraint declaration 

A timing constraint declaration specifies either the required setup and hold times on the DUT's 
synchronous inputs, or the expected delays on the DUT outputs (both synchronous and combinatorial). 
Timing declarations are optional; they may be either omitted entirely, or applied to some, or all, of the 
DUT ports1. Timing declarations are only required when carrying out a timing simulation with a back-
annotated netlist; the simulation will almost certainly fail without appropriate timing declarations. The 
declarations may be omitted when carrying out delta-delay simulations. 

The purpose of the timing declarations is to ensure that any synthesis constraints were correctly 
specified, interpreted and applied, and that the resulting netlist correctly implements those constraints. 
The values in the Maia timing declarations should therefore be the same as any values that are 
specified in the synthesis constraints file. The synthesis constraints should therefore be translated 
directly into the equivalent Maia format. For this reason, Maia timing declarations are generally referred 
to as 'constraints' in this manual, although they are not of course synthesis constraints.  

There are four constraints which can be applied to DUT signals, which are: 

• A synchronous input setup time (tSU) 

• A synchronous input hold time (tIH) 

• A synchronous or combinatorial output hold time (tOH) 

• A synchronous or combinatorial output delay (tOD). The symbol tOD is generally used in this 

manual for both cases, although tCO may also be used for synchronous (clocked) outputs. 

Constraints may be applied either to DUT ports, or to internal DUT signals. tSU and tIH constraints 

may be applied to both inputs and inouts; tOH and tOD may be applied to outputs and inouts. 

8.9.1 Syntax 

timing-constraint : 

     timing-constraint-LHS   = timing-constraint-RHS  

   ( timing-constraint-LHS ) = timing-constraint-RHS  

 

timing-constraint-LHS : 

   tidentifier-list        timing-drive tidentifier-list   

   timing-edge videntifier timing-drive tidentifier-list   

   tidentifier-list        timing-drive timing-edge videntifier   

 

tidentifier-list : 

   * 

   videntifier-list 

 

 

1 Care should be taken when constraining some paths to a combinatorial output, and not others; see (8.9.7). 
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videntifier-list : 

   videntifier 

   videntifier-list , videntifier 

 

timing-drive : one of 

   ->  to 

 

timing-edge : one of 

   posedge negedge 

 

timing-constraint-RHS : 

   ( constant-expression ) 

   ( tconstraint-RHS-valopt : tconstraint-RHS-valopt ) 

 

tconstraint-RHS-val : 

   constant-expression 

Constraints (timing-constraint-RHS) are normally specified as pairs of floating-point values, in the 

form (t1:t2). t1 and t2 are time values in the simulation timescale (8.7). These pairs correspond to 

(tSU:tIH) for inputs, and (tOH:tOD) for outputs. The tIH and tOH values are optional, however, 

so constraints may also be specified as single floating-point values, in the form (t), (:t), or (t:). 

8.9.2 Input constraint definition 

An example of an input constraint is: 

D -> posedge C = (3.2 : 2.1) 

Example 91 

This constraint should be interpreted as follows, assuming a ns timescale: 

• the new value of the D input must be valid by, at the latest, 3.2ns before the rising edge of C 

• the new value of the D input must remain active for at least 2.1ns after the rising edge of C 

These requirements are best represented in terms of an analog waveform: 

D

C

3.2 2.1

t1 t2 t3

 

Figure 3: Input constraint definition 

To match the required behaviour, the testbench drives D to the required value 3.2ns before the clock 

edge, and maintains this value until 2.1ns after the clock edge, when D is driven to X. D then remains 

at X until 3.2ns before the next clock edge. If the DUT is to correctly respond to this stimulus, then it 

must be timing-aware: it cannot simply sample D at the two end-points, for example, because the 
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sample event may occur either before or after the D change event within a given sequence of delta 

cycles. 

8.9.3 Output constraint definition 

An example of an output constraint is: 

posedge C -> Q = (2.5 : 5.3)  // clocked version 

A -> B = (2.5 : 5.3)     // combinatorial version 

Example 92 

These two constraints are treated identically, except that the combinatorial constraint is tested from 
any change in A, while the clocked constraint is tested only from a rising edge of C (or a falling edge, 

if negedge is instead specified). For simplicity, the discussion below considers only the clocked case. 

This constraint should be interpreted as follows, assuming a ns timescale: 

• The old value of the Q output must hold until at least 2.5ns after the rising edge of C 

• The new value of the Q output must be valid by, at the latest, 5.3ns after the rising edge of C 

These requirements are best represented in terms of an analog waveform: 

Q

C

2.5
5.3

t1 t2 t3

 

Figure 4: Output constraint definition 

The Maia testbench samples Q in such a way as to guarantee that a pass will be reported if, and only if, 

the following three conditions are fulfilled, independently of any race conditions: 

• Q retains its old value until, and including, time t2 

• Q has the expected new value at time t3 

• Q does not change at any time until the next t2 (this is the 'stability window') 

8.9.4 Input setup and hold constraints 

tSU and tIH may be either positive or negative. tSU is measured before the relevant clock edge: a 

tSU of 1, for example, means one time unit before the clock edge, while a tSU of –1 means one time 

unit after the clock edge. tIH is measured after the relevant clock edge: a tIH of 1, for example, 

means one time unit after the clock edge, while a tIH of –1 means one time unit before the clock 

edge. 
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The time specified by the value of tSU must be before (or at the same time as) the time specified by 

the value of tIH. 

If the tSU and tIH constraints are present, Maia will drive the relevant DUT input as described in 

(8.9.2). The examples below assume a ns timescale, and show the times over which the input is driven 

with the required value, as an inclusive range relative to the clock edge. The time interval [-2.1, -0.1], 
for example, means that the input is driven with the required value for a total time of 2.0ns, which 
starts 2.1ns before the clock edge, and ends 0.1ns before the clock edge. 

D -> posedge C = ( 2.1: 0.1)  // valid 2.2ns: [-2.1, 0.1] 

D -> posedge C = ( 2.1:-0.1)  // valid 2.0ns: [-2.1,-0.1] 

D -> posedge C = (-0.5: 0.7)  // valid 0.2ns: [ 0.5, 0.7] 

D -> posedge C = (-0.5:-0.1)  // ERROR: cannot both be <0 

 

// D setup and hold relative to the falling edge of C 

D -> negedge C = (-0.5: 0.7)  // valid 0.2ns: [ 0.5, 0.7] 

 

// 'to' is alternative syntax for '->' 

D to negedge C = (-0.5: 0.7)  // valid 0.2ns: [ 0.5, 0.7] 

 

// the hold is optional, and defaults to 0: the setup 

// must therefore be >= 0 

D to posedge C = ( 0.5)       // valid 0.5ns: [-0.5, 0.0] 

D to posedge C = (-0.5)       // ERROR: setup after hold 

Example 93 

If no constraints are applied to a synchronous DUT input, Maia will assume that the input is untimed, 
and will drive the input a short time before the rising clock edge, and will maintain the driven value 
until the same point before the next clock edge (10.8). 

8.9.5 Output hold and delay constraints 

tOH is the time for which a DUT output is guaranteed not to change after any change on a controlling 

input1. tOH must therefore be greater than or equal to zero. No hold time check is carried out if tOH is 

specified as zero, or omitted. 

tOD is the time at which the DUT output is guaranteed to have its new value. tOD must therefore be 

greater than tOH; it is illegal for both to have the same value, unless both are zero (tOH = tOD = 0 is 

a special case, which corresponds to an untimed or delta-delay DUT). 

Note that tOH is not equivalent to a minimum output delay. A tOH specification requires that the 

output has not changed at time tOH, while a minimum output delay specification requires that an 

output has, or may have, changed at that time. A minimum delay specification for a device output is of 
little or no use.  

The tOD specification should normally be the same as the value specified in the synthesis constraints 

file, and so will normally be the expected maximum output delay. There is no mechanism to specify 

 

1 A 'controlling input' is the relevant clock edge for a sequential drive statement, or the last input to change for a combinatorial 
drive statement. 
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minimum, typical, and maximum output delays; it would make no more sense to specify these in Maia 
than it would in a synthesis constraints file. 

If the tOH and tOD constraints are present for a given DUT output, Maia will test the output as 

described in (8.9.3). 

Synchronous output constraints must name a declared clock on the LHS, and must have a posedge or 

negedge qualifier; for example: 

posedge C -> Q = (2.0)    // tOD (tCO) from C to Q 

Example 94 

A constraint which does not have a posedge or negedge qualifier is a combinatorial constraint, and 

should be applied only to combinatorial outputs; for example: 

A -> B = (2.0)        // tOD from A to B 

Example 95 

Some example specifications are given below.  

posedge C -> Q = (0.2 : 3.1) 

posedge C -> Q = (-0.2 : 2.1) // ERROR: tOH and tOD must be >= 0 

posedge C to Q = (4.1 : 2.1)  // ERROR: tOH must be <= tOD 

A -> B = (0.1 : 2.5) 

B to C = (2.0)        // hold optional; this is equivalent to (0:2.0) 

Example 96 

If no constraints are applied to a DUT output, Maia will assume that the output is untimed, and will 
sample it a short time after any controlling input has changed value. No output hold test is carried out; 
in other words, there is no test that the output retains its previous value after any controlling input 
changes value. 

8.9.6 Wildcard constraints 

Where the syntax allows a list of DUT signals (tidentifier-list) in a constraint declaration, that 

list may instead be specified as a * wildcard. Some examples of wildcard constraints are: 

* -> posedge CLK1 = (0.8, 3.1)   // case 1: setup and hold to a clock 

negedge CLK2 -> * = (9.6)     // case 2: output delay from a clock 

* -> D = (2.1, 5.3)       // case 3: combinatorial 

E -> * = (4.2)          // case 4: combinatorial 

Example 97 

The wildcard is a shorthand notation for all the signals on the LHS of a drive declaration (excluding the 
clock itself, for a clocked constraint), or all the signals on the RHS of a drive declaration. It is not a 
shorthand for all possible paths from an input to an output; Maia does not analyse the DUT to find 
these paths, but instead relies on any drive declarations. 

For case (1), all the signals on the LHS of any drive declaration which is clocked from CLK1 are 

assumed to have the same setup and hold to CLK1 (in this case, 0.8 and 3.1). 

For case (2), all the signals on the RHS of any drive declaration which is clocked from CLK2 are 

assumed to have the same tCO specification from CLK2 (in this case, 9.6). 
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Case (3) is applied to any combinatorial drive declaration which lists D as an output. In this case, all 

signals on the LHS of those drive declarations are given the same tOH and tOD specification to D (in 

this case, 2.1 and 5.3). 

Case (4) is applied to any combinatorial drive declaration which lists E as an input. In this case, all 

signals on the RHS of those drive declarations are given the same tOD specification from E (in this 

case, 4.2). 

Care should be taken when using a wildcard in a combinatorial drive, to avoid possible constraint 

conflicts; see (8.9.7). 

8.9.7 Constraint conflicts 

In general, there are two classes of conflict which are possible when testing combinatorial paths: 

1 If a combinatorial output is derived from more than one input, then it may not be possible 
to test all the output hold requirements on that output (8.9.7.1); 

2 If multiple outputs have common dependent inputs, then it may not be possible to test all 
the output delay requirements on those outputs (8.9.7.2). 

These conflicts apply only to combinatorial constraints. When a conflict is detected, one or more 
constraints must be relaxed; the compiler can always detect conflicts and will issue a warning 
identifying the relaxed constraints. 

If it is necessary to fully test the timing of combinatorial outputs, then separate drive 
declarations should be created for each constrained input-to-output path, and each should 
be tested separately. Any attempt to test multiple combinatorial paths using single drive declarations 
will rapidly become unworkable; see (8.9.7.1) and (8.9.7.2). 

8.9.7.1 Conflict case 1: multiple inputs 

Consider these two timing constraints, for two inputs to a combinatorial circuit: 

 A -> D = (14 : 18)   // tOH = 14, tOD = 18 

 B -> D = (6 : 12)   // tOH = 6, tOD = 12 

Example 98 

In this case, Maia arranges the DUT timing such that A is driven at relative time 0, and B is driven at 

time 6. If D is to change, it should therefore take on its new value at, or before, time 18 (Figure 5). 

This method tests both tOD requirements, and guarantees that a tOD failure will be detected 

(although, if there is a failure, it cannot determine which of the two paths has failed). However, it is 
now impossible to test both tOH requirements. 

If the DUT is correctly implemented, D will remain valid until at least time 12. However, if D does 

change in the time range (12, 14], Maia cannot tell whether the change is allowable (as a result of a 
change in B), or a violation (as a result of a change in A, before A's hold time specification has 

expired). For these constraints, the compiler will report that the hold time requirement has been 
relaxed, and that the hold specification from A to D has been dropped. 
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A

B

D

0 6 12 18

 

Figure 5: Multiple input constraint conflict 

The situation is worse if there are any further inputs to D, but they have not been constrained. Consider 

this drive declaration: 

 [A, B, C] -> [D]   // test a 3-in combinatorial circuit 

Example 99 

If only the two paths A-D and B-D have been constrained, Maia will set the unconstrained path from C 

to D as follows: 

• the hold time is assumed to be 0; 

• the output delay is set to a default value, which is not related to any specified output delays. 

This will almost certainly not produce the required results. When constraining combinatorial circuits, all 
input to output paths should be constrained with a tOD specification, and a single hold specification 

should be used for all paths by providing a wildcard. Maia will then only test the hold specification for 
the controlling input (the last input that changes). The required constraints are now: 

* -> D = (6, 18)  // hold requirement from any input 

A -> D = (18)    // tOD only 

B -> D = (12)   // tOD only 

Example 100 

The tOD value in the wildcard constraint is arbitrary, since it will be overridden by the higher-priority 

individual specifications; however, it should be at least 6 to avoid a syntax error. 

8.9.7.2 Conflict case 2: multiple outputs with dependent inputs 

Consider these timing constraints, for two combinatorial outputs driven from two inputs: 

DUT {  

   module comb1 (input A,B, output D,E) 

   [A,B] -> [D,E] 

   A -> D = (14 : 18) 

   B -> D = (6 : 12) 

   A -> E = (6 : 9) 

   B -> E = (5 : 12) 

} 

Example 101 

If the D output is considered, and the same procedure is followed as in (8.9.7.1), then the times at 

which the testbench must drive A and B are again as shown in Figure 5. However, if the E output is 
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now considered, it is apparent that A and B are driven at arbitrary times. The consequence of this is 

that the testbench now cannot detect a failure in the tOD specifications for the path A-E: 

A

B

D

0 6 12 18

E
 

Figure 6: multiple output constraint conflict 

For these constraints, the compiler will warn that the timing on input A has been relaxed (and that the 

output hold times on D and E have also been relaxed). 
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9 DRIVE STATEMENT 

9.1 Introduction 

A module declaration (8.2) creates a set of named external variables which correspond to the input, 
output, and bidirectional ports of the DUT, while a signal declaration (8.4) creates equivalent named 
variables which correspond to specified internal signals within the DUT. In principle, having direct 
access to these variables is sufficient to allow simple manual testing of the DUT, in a procedure such 
as: 

• wait until an input port setup point, using a wait statement 

• assign an expression to the input port 

• wait, set the clock active 

• wait until an output port is expected to be valid 

• read the output port and check it; report the results with report or assert 

• set the clock inactive, and wait until the start of the next cycle 

However, this procedure is complex, and quickly becomes impractical when a number of ports have to 
be driven and tested, or when the outputs are pipelined, or when various inputs and outputs have 
different timing. Maia automates this procedure using a drive statement. A drive statement has a 
number of advantages over the manual process described above: 

• automated input, output, and bidirectional timing derived from constraints 

• automated stability testing (glitch checking) 

• automated pipelined output testing (outputs tested a known number of clock cycles after the 

inputs change) 

• automated triggered output testing (outputs tested after a trigger condition is found) 

• automated pass/fail counting, and error reporting 

• internal DUT signals are treated identically to external ports, without the need for force/release 
semantics 

• automated bus direction switching for bidirectional signals 

• automated clock timing and driving 

• static type checking on port and signal directions 

• optional static type checking that confirms that module signals are driven by, or compared 

against, expressions of the correct bit size 

This clause describes the syntax and semantics of drive statements. The procedure used to execute a 
drive statement at run-time is described in (10.8), (10.9), and (10.10). 
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9.2 Statement format 

A drive-statement includes an optional list of input expressions on the left-hand side, a separator, 

an optional pipeline expression, and an optional list of output expressions on the right-hand side. Each 
input and output expression is matched to a port or a signal which is named in the corresponding drive 
declaration (8.3). 

There are three different forms of drive statement, since the input and output lists are optional. 
Output-only drive statements are triggered drive statements. The other two forms (the form with inputs 
only, and the form with both inputs and outputs) are sequential drive statements. Sequential drive 
statements may additionally be pipelined. 

Sequential drive statements may be used only in user functions (7.5); triggered drive statements may 
be used only in trigger functions (7.7).  

9.2.1 Drive statements with both input and output expressions 

A drive statement with both input and output expressions drives the inputs specified in the 
corresponding drive declaration, and tests the outputs specified in the same drive declaration. This 
program (an example of a complete testvector-program) includes two drive statements: 

DUT { 

 module test1(input D1, D2, CLK, output Q) 

 create_clock CLK 

 [D1, D2, CLK] -> [Q]  // sequential drive declaration (8.3.3) 

} 

[0, 1, .C] -> [0]     // drive statement 1 

[1, 0, .C] -> [1]     // drive statement 2 

Example 102 

In the first clock cycle, D1 is driven to 0, and D2 is driven to 1, before driving the clock. The output is 

then tested against 0. In the second clock cycle, D1 is driven to 1, and D2 is driven to 0, before driving 

the clock. The output is then tested against 1. 

9.2.2 Input-only drive statements 

A drive statement, and the corresponding declaration, may omit the right-hand side. In this case, the 

inputs are driven as specified, and no outputs are tested: 

DUT { 

 module test1(input D1, D2, CLK, output Q) 

 create_clock CLK 

 [D1, D2, CLK] -> [Q]  // sequential drive declaration 1 (8.3.3) 

 [D1, CLK]       // sequential drive declaration 2 

} 

[0, 1, .C] -> [0]     // drive statement 1 

[1, 0, .C] -> [1]     // drive statement 2 

[0, .C]          // clear D1, advance one clock cycle 

Example 103 
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9.2.3 Output-only drive statements 

An output-only drive statement is a triggered drive statement, and may be used only in a trigger 
function. The corresponding drive declaration must include a single input, which must be a declared 
clock. The trigger function is implicitly driven from this clock: 

DUT { 

 module test1(input D1, D2, CLK, output [15:0] Q); 

 create_clock CLK; 

 @tfunc [CLK] -> [Q];  // triggered drive declaration (8.3.3) 

} 

void main() 

 int x; 

 ... 

 trigger tfunc(x) when Q == 7; 

} 

@tfunc(int y) { 

 ->[y+2];       // Q should be 'x+2' the cycle after it is 7 

 ->[8];        // Q should be 8 two cycles after it is 7 

} 

Example 104 

Output-only drive statements are unusual in that the drive declaration and the drive statement do not 
match. The declaration must include a single clock input, but the statement itself omits the clock input, 
since it is not responsible for driving the clock (in the example above, the clock might be driven from 
main, but the resulting output is tested in tfunc). 

Triggered drive statements may not include a pipeline expression. 

9.2.4 Pipelined drive statements 

Sequential drive statements may optionally include a pipeline expression after the -> separator; if the 

expression is omitted, the pipe level defaults to one (in other words, the outputs are tested immediately 
after the clock edge). Note that combinatorial drive statements may not be pipelined; a pipeline 
expression is illegal if there is not a declared clock on the LHS of the declaration. 

The pipeline level may be specified as an integer constant, an identifier for a variable, or an expression 
(which must be enclosed in parentheses to avoid ambiguity). However, the pipeline level must be 
known before the drive statement is executed; the expression is sampled when the statement is 
reached. If the pipeline level cannot be determined in advance, then a triggered drive statement should 
be used, rather than a pipelined drive statement.  

DUT {       // 4-stage pipelined 8x8 multiplier 

 module test( 

  input  [7:0] D1, D2, 

   input  CLK, 

  output [15:0] Q); 

 create_clock CLK; 

 [D1, D2, CLK] -> [Q]; 

} 

 

void main() { 

 var8 i,j; 

 for all i 
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  for all j 

   [i, j, .C] ->4 [i *$16 j];  

} 

Example 105 

9.2.4.1 The pipelined checker 

A pipelined drive statement creates a pipelined checker for any signals on the RHS of the declaration. 
For the example above, the pipeline is advanced by CLK, and the expected output data is loaded into 

level 4 of the pipeline. The expected output data progresses down the pipeline, and is tested against Q 

when it emerges from level 1. 

9.2.4.2 Checker flushing 

Pipelined checkers are automatically flushed when the program terminates. Any outstanding test 
operations are completed, and the results are recorded. If necessary, however, a pipelined checker can 
be manually flushed simply by issuing further operations with don't-care inputs. The 4-stage multiplier 
above may be manually flushed as follows: 

void main() { 

 var8 i,j; 

 for all i 

  for all j 

   [i, j, .C] ->4 [i *$16 j]; 

 [-,-,.C] -> [255 *$16 253]; 

 [-,-,.C] -> [255 *$16 254]; 

 [-,-,.C] -> [255 *$16 255]; 

} 

Example 106 

There is no simple way to test the pipeline output before the pipeline has filled (for the example above, 
Q is not tested until the fourth clock edge). If necessary, a separate trigger function may be used to 

check the outputs while the pipeline is filling. 

When changing the required pipeline level, it is potentially possible to overwrite a given level in the 
checker. A runtime error will be reported if existing (untested) data in the checker is overwritten with 
new data. However, 'don't care' data may be written into the checker without affecting the previous 
data at that level. Uninitialised levels in the checker are treated as don't care data (in other words, no 
test is carried out when the uninitialised level emerges from the checker pipeline). 

9.2.4.3 Determining the maximum checker pipeline size 

The required maximum size of any checker pipeline must be statically determinable. The compiler 
automatically determines the required maximum size if all the drive statements referring to a given 
pipeline have statically determinable pipe levels (in other words, the level is specified as a constant or 
as a constant expression). If, however, the required maximum size cannot be determined during 
compilation, then it must be specified as part of the clock declaration, with a –pipeline specification 

(8.5.4). 
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9.3 Drive directives 

Drive statements may contain directives, rather than expressions. Directives are case-insensitive, and 
are either shorthand for specific input and output conditions, or specify some action on or within the 
DUT. 

9.3.1 .C 

This directive may appear only on the left-hand side of a drive statement, in a position which 
corresponds to a single-bit port which has been declared as a clock (8.5). It may only appear once in a 
drive statement; there is no mechanism to clock more than one input simultaneously. This directive 
appears only in clocked drive statements; it cannot be used in combinatorial drive statements. 

The clock directive instructs the simulator to advance one clock cycle, using the default clock waveform 
or the waveform defined in the clock declaration. The testbench automatically times inputs and samples 
outputs according to this clock waveform. 

9.3.2 .X and .Z 

When these directives appear on an input, the entire input is driven to X or Z; when they appear on an 

output, the entire output is tested against X or Z. 

9.3.3 .R 

This directive specifies an internal 'release' condition within the DUT. It may only appear on the left-
hand side of a drive statement, in a position corresponding to an internal DUT signal (8.4); it may not 
be specified for a DUT port. 

Internal DUT signals may be driven in the same way as external DUT ports, but this is handled 
internally by disabling the internal DUT driver that would otherwise have driven that signal. This 
internal driver is automatically disabled whenever a drive statement applies an expression to an internal 
signal; it remains disabled until the .R directive is issued.  

This directive is applied with the same timing as any other expression applied to the specified internal 
signal. If, for example, a timing declaration specifies that the internal signal has a setup of 2.1ns to a 
declared external clock, then the .R directive will re-enable the internal driver 2.1ns before that clock.  

The example below shows a 4-input 1-output clocked module. The Q output is driven from a D-type 

register, and the input to the D-type is named Dint in the HDL code. Dint is declared as a signal in 

the DUT declaration, and so may be driven from the testbench, to force the DUT output to a specific 
value. Left to its own devices, this DUT would produce the output sequence 01010101 over eight clock 

cycles; this code instead forces the output in cycles 3, 4, 5, and 6 to produce 01100001 instead. 
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DUT { 

 module test(input A, B, C, CLK, output Q) 

 signal (input mod1.Dint)  // signal in the 'test' module (test.mod1.Dint) 

 create_clock CLK 

 [CLK, mod1.Dint] -> [Q]    // force the output 

} 

// start with the internal driver enabled 

[.C, -]  -> [0]  // the testbench is not driving Dint 

[.C, -]  -> [1] 

[.C, 1]  -> [1]  // output should be 0, is forced to 1 

[.C, 0]  -> [0]  // output should be 1, is forced to 0 

[.C, -]  -> [0]  // output should be 0, is forced to 0 

[.C,]    -> [0]  // output should be 1, is forced to 0 ('-' is optional) 

[.C, .R] -> [0]  // internal driver re-enabled, output takes on internal value 

[.C, -]  -> [1]  // internal driver remains enabled 

Example 107 

9.3.4 Don't care conditions 

A don't care condition is specified either with a '-' character, or by completely omitting the entry in the 

drive statement (both versions are shown in the example above). When applied to an input, the input is 
unchanged from its previous value. When applied to an output, the output is ignored for testing 
purposes. 

9.4 Labelled drive statements 

Drive statements must be labelled when two or more drive declarations would otherwise have the same 
signature (8.3.7). It is not possible for triggered drive statements to have the same signature, so 
triggered drive statements are never labelled. 
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10 SCHEDULING MODEL 

10.1 Introduction 

This section describes an idealised scheduling model which is independent of the back-end code 
generator, and whether or not the generator relies on an existing third-party simulator. There may 
potentially, however, be issues with specific Verilog simulators (A4.7.5). 

Maia uses a co-operative scheduling model, in which a given function remains in context until it 

executes a wait, drive, trigger, or exec statement. These statements are defined as 'suspending' 

statements, while all other statements are defined as non-suspending statements. 

All maximally-sized blocks of non-suspending statements are guaranteed to execute atomically, in zero 
simulation time, without interference from any other function. When a suspending statement is 
executed the current function suspends and returns control to the scheduler, which may then schedule 
future activity as a result of that statement. 

The scheduler then advances to the next time at which an activity has been scheduled. The 
corresponding function is then resumed, and it carries on execution until it executes a suspending 
statement. 

There may potentially be more than one function which is scheduled to be resumed at a given time. If 
this is the case, the scheduler makes an arbitrary decision as to which of these functions to resume. 
User code should not assume any given order of function execution when statement blocks in different 
functions are scheduled to be executed at the same time; the statement blocks may have the desired 
order of execution in one program run, but have a different order in a second run. 

10.2 Threads 

Maia programs are multi-threaded. The main function is entered at or before time 11, and executes in 

thread 0 (the 'main' thread). New threads are created in one of two ways: 

1.  by execution of an exec statement. The exec statement returns immediately (in zero simulation 

time), and the newly-created thread starts execution immediately. A function which is entered 
by means of an exec statement is a 'Thread Function' (7.6), and may advance time as required 
(10.4). Every Thread Function has a unique thread identifier (a 'thread ID'). 

2.  trigger functions (7.6) are automatically entered when the corresponding trigger condition is 
encountered. Trigger functions do not have a thread ID. 

Statements which are scheduled to run at the same simulation time will execute in an arbitrary non-

deterministic order. The two report statements in Example 71, for example, both run at the same 

time, in an unknown order. 

 

1 main may be entered at time 1, rather than time 0, in order to avoid start-up races in the generated Verilog code. 'Time 1' 

refers to the first step in the program's execution. If the time units are nanoseconds, and the precision is 100 ps, for example, 
then 'time 1' is 0.1 ns. 
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10.3 Program termination 

A Maia program will continue execution until an exit statement is encountered, or until all threads 

have completed execution. 

Execution of an exit statement (from any thread) will terminate the program cleanly, together with 

any threads which are currently active. Program execution will otherwise continue until all threads 
(including the main thread) have terminated by executing a return statement or "falling off the 

bottom". This second termination mechanism is equivalent to requiring all threads to re-join main, and 

then terminating main. 

10.4 Advancing time 

The only Maia statements which advance time are the wait statement (6.9) and the drive statement 
(9). A function which includes wait or drive statements is said to be time-consuming; all other functions 
execute in zero simulation time. 

The wait statement suspends execution of the calling thread for the specified time. The thread resumes 
execution on completion of the wait. 

When a drive statement is executed the calling thread is suspended. In most circumstances, the thread 
will resume execution at the next Operating Point (OP). 

10.5 Thread Functions 

When a function is entered by execution of an exec statement a new instance of that function is 

created, together with any local storage required by that function (including any static objects declared 
within the function). This local storage is referred to as 'Thread-local storage', or TLS, and the function 
itself is a 'Thread Function'. There may be multiple in-progress instances of any such Thread Function 
at a given time.  

A function which is not a Thread Function exists as a single instance at runtime, irrespective of the time 
at which the function is called, or the thread from which it is called1. Example 108 calls f3 from two 

threads: 

void main() { 

   int tid; 

   exec f1(tid); 

   wait 1.5; 

   exec f2(tid); 

   // f1(tid);  /* ILLEGAL: f1 is a Thread Function, and must be exec'ed */ 

} 

 

void f1(int& tid) { 

   f3(tid);                                          // direct call: no 'exec' 

} 

 

 

1 This is a limitation of the 2021.4 Verilog code generator. Recursive function calls are not supported in 2021.4 for the same 
reason. 
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void f2(int& tid) { 

   f3(tid); 

} 

 

void f3(int tid) { 

   report("%T: f3, in thread %d\n", _timeNow, tid);  // upper-case 'T' for float 

} 

Example 108 

This program reports: 

0.1 ns: f3, in thread 1 

1.6 ns: f3, in thread 2 

The f3 function that is called in threads 1 and 2 is the same instance of the f3 function, and does not 

have any TLS. While this is not an error, it is likely to lead to unexpected results if f3 advances time, 

and this should be avoided. 

Note that, in this example, execution begins at 0.1 ns. This is 'time 1', because the default time units 
(ns) are used, and because the wait of 1.5 ns sets the precision to 100 ps (see 8.8). Execution may 
also begin at time 0; see (10.2). 

10.6 HDL signal drivers 

A thread may not be created if the new thread could potentially drive an HDL signal which is already 
driven in another thread. This determination is made statically, and an error is raised if necessary1. This 
procedure ensures that any HDL signal which is driven by the program has only a single driver. 

If a given thread is responsible for driving a clock signal (by executing drive statements), then that 
thread will generate the clock waveform described by the relevant create_clock declaration (and an 

error will be raised if any other thread attempts to drive the same clock signal). The waveform is 
'anchored' at time 0, and not at the time at which the first drive statement is executed (in other words, 
the thread synchronises to the next OP, which is at some integer multiple of the cycle time). This 
ensures that all clocks which are generated by the testbench have a known relationship to each other, 
which can be determined solely from the relevant create_clock declarations.  

DUT-output clocks are generated by the DUT itself. Since the testbench is not responsible for driving 
the clock, there is no restriction on the number of threads which can execute drive statements which 
are associated with that clock. The create_clock declaration describing a DUT-output clock must 

match the actual clock waveform generated by the HDL code, with a potential phase offset (in other 
words, the DUT is not required to start waveform generation at time 0, or at some other integer 
multiple of the cycle time). Any threads which use a DUT-output clock will synchronise to the rising 
edge of that clock, and determine the phase offset relative to the create_clock declaration; this 

offset is used to find the OP. 

 

1 The compiler statically constructs a call graph to determine whether this is possible. mtv will output a dot-format call graph if 
the –cg option is specified. 
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10.7 Operating point 

All user statements are executed either at program start-up, or on completion of a wait statement, or at 
a time defined as an Operating Point, or 'OP'. Drive statements have an associated (potentially 
defaulted) cycle time definition, and advance time on a cycle-by-cycle basis. The OP is the point at the 
start of that cycle at which user statements are executed. This abstraction allows testbenches to be 
written in a cycle-synchronous way: 

void main() { 

  // execute code at program start-up 

  ... 

  // this drive statement synchronises to the next OP, drives the A, B, C inputs, 

  // and advances the clock, returning control to the user at the next OP. The 

  // output testing is decoupled from the cycle by separate pipelined checkers 

  [.C, A, B, C] -> [D, E, F]; 

 

  for(int i=0; i<100; i++) {     // run for 100 clock cycles 

    ...                          // now at an OP: user code runs here 

    [.C, A, B, C] -> [D, E, F];  // drive inputs, advance one cycle, test outputs 

  } 

} 

Example 109 

For a clocked drive statement, the OP is simply the time at the start of the relevant clock definition. For 
a combinatorial drive statement, the compiler determines an equivalent cycle time from the relevant 
combinatorial delays (8.3.6.1). This cycle time reflects the longest combinatorial path from the signals 
in the drive inputs, through to the drive outputs. The OP is the time at the start of this cycle. The 
compiler will again use a default cycle time if the relevant information is not supplied in the DUT 
declaration. 

10.7.1 DUT output testing 

The OP can be considered to be the time at which the user drives inputs to the DUT. If the output hold 
and delay times are appropriately constrained (8.9.5), the DUT outputs from the previous clock edge 
may also be 'manually' tested at this time, by reading and checking them. This is true when using the 
default clock waveform and timing constraints, but it is not generally the case (the outputs might not, 
in general, become valid until after the OP). Manual DUT output testing is discussed in 10.11 below. 

The runtime therefore ignores the OP when testing DUT outputs, and instead triggers a pipelined tester 
on the appropriate clock edge (see 8.5.3.2). 

10.8 Drive statement execution 

The procedure which is used to execute a drive statement is described in the algorithm below. The 
algorithm is given for a clocked drive, but the procedure for a combinatorial drive is similar, with the 
corresponding event times determined by the procedure given in (8.3.6). 

The clock cycle is first divided into n slots, where slot 0 is defined as the OP. n is the number of 
minimum-precision ticks in the clock cycle time (a 10ns cycle time, for example, in a testbench which 
has a minimum precision of 100ps, has 100 ticks, so n is 100). An event queue which contains n slots 
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(numbered as [0, n-1]) is first constructed for the drive statement. Each slot can contain an event for 
one or more of these four operations, where the term 'signal' means a DUT input or internal signal: 

• Drive the clock to 1 

• Drive the clock to 0 

• Drive a signal. An internal signal which is driven is forced to the requested value 

• Release a signal. A release event drives an input to X, or releases a force on an internal signal 

If the relevant clock has no waveform declaration, and the minimum precision is 1ns, then the default 
event queue contains 10 slots. The clock rises in slot 1, and falls in slot 6. 

The queue is constructed as follows: 

1. The clock rising and falling edges are inserted into the event queue if the LHS of the drive 

statement contains a .C directive, and that clock is to be generated by the testbench (in other 

words, it is not a DUT output). If the clock has no waveform declaration, a 10ns queue is 
constructed, with rising and falling edges in the slots corresponding to 1ns and 6ns, respectively 

2. For each signal which is to be driven, the setup time is found from the relevant input constraint 
(8.9.2). The setup may be relative to the clock rising or falling edge. This time is converted to a 
slot number, and a drive event is added to that slot. If the signal has no input constraint, or an 
empty setup constraint, a drive event is instead added to the slot immediately preceding the 
clock rising edge event. For the default event queue, this is slot 0 

3. For each signal which is to be driven, the hold time is found from the relevant input constraint, 
and a release event is added to the queue, in the same way as described for setup events 
above. However, there is no default hold time: if a hold time is not given, no event is added to 
the queue 

4. Multiple events in a given slot are unordered, and are not guaranteed to be executed in a specific 

order1 

5. The queue slot which contains the first event (or which would have contained the first event, if 
the relevant signal had been driven) is noted as the 'first event time', or FET. For the default 
event queue, if there are any events which have a default setup time, this will be slot 0 

It is an error if any events are scheduled for slots outside the range [0,n-1]. This is reported as a 

constraint error during compilation. 

On any given cycle, a signal is driven if an expression, or a .X or .Z directive, is supplied as the drive 

value (the signal is driven to all X for .X, or all Z for .Z). If the expression is instead omitted, or 

supplied as a dash character (-), no drive or release event is added for the signal. In this case, the 

signal simply retains the last driven value. 

 

1 In particular, drive and release events are not ordered with respect to clock edge events when they occur in the same slot. 
For a signal which is explicitly constrained with zero setup to a clock edge, the drive event may occur either before or after the 
relevant clock edge (in other words, a DUT which is not timing-aware may incorrectly sample the data). The rationale is that a 
DUT which relies on delta-delay ordering in order to sample a signal with zero setup is incorrectly coded, and any 'assistance' 
from the testbench would be misguided. 



  

 Page 141/172 

LRM 2.7 © 2008-2021 Maia EDA 

 

The setup event will occur after the relevant clock edge event if the setup time is negative; conversely, 

the hold event (if there is one) will occur before the relevant clock edge if the hold time is negative. 

At runtime, the drive statement is executed as follows: 

1. The user thread is suspended and time is advanced, if necessary, to the next simulation time 
which corresponds to the FET for this clock 

2. The expressions which are to be assigned to the DUT inputs are sampled and the results recorded 

3. The events which are scheduled for this slot are executed, in a random order 

4. Time is advanced to the next slot which contains one or more events, and these events are 
executed, in a random order. The DUT is driven with the data sampled in (2) above, rather than 
the state of any input expressions at the current time 

5. Step 4 is repeated until there are no more events in the queue 

6. Time is advanced to slot n (slot 0 in the next cycle), and control is returned to the user thread 

The user code therefore resumes at the OP. When the next drive statement is encountered, it is again 
executed as described above. Note that: 

1. The user code may execute a wait statement when it resumes. However, if the user delay 

advances time beyond the next FET, a subsequent drive statement will not be able to 
synchronise to the next cycle, and will instead skip one or more cycles until it can find the next 
FET. In this case a run-time warning is issued (11.2) 

2. For a simulation with a default event queue and default setups (or, in general, any simulation in 
which slot 0 has any associated events), it is not possible to execute a wait statement at the 

OP without skipping cycles as described in (1) above 

3. A function may execute any number of drive statements which are associated with different 
clocks: 

[.C, e1, e2] -> [e3];   // .C advances CLK1, with cycle time 3.0ns 

...                     // user code which is executed at the OP for CLK1 

[e4, .C] -> [e5];       // .C advances CLK2, with cycle time 1.7ns 

...                     // user code which is executed at the OP for CLK2 

In this case, the first drive resumes user statement execution at some multiple of (n * 3.0) ns. 
The second drive must then advance to an integer multiple of 1.7ns, plus the FET associated 
with CLK2. The same situation arises if the first drive statement is replaced with a wait. This 

means that a drive statement does not necessarily advance by a time equal to the relevant clock 
cycle. In general, however, a drive statement advances by at least one complete cycle. 

10.8.1 Delta-delay simulations 

A delta-delay simulation will be carried out if the DUT section contains no timing constraints. In this 
case, the clocks will be generated with whatever period and waveform they have been defined with, 
and any DUT inputs will be driven one tick before the clock rising edge. The DUT outputs are sampled 
and tested a short time after the clock rising edge. 
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In this case, since the inputs have no hold time constraints, a waveform display will show that the 

inputs are changing only in the tick before the clock edge, and are stable at all other times. 

If any timing constraints are specified (against the relevant clock) then the simulation is timed. The 
inputs will be driven to the required value in the relevant [tSU, tIH] interval, and will be driven to X at all 
other times. The outputs are tested to confirm that they are stable and have the required value in the 
[tOD, tOH] interval (where the hold is tested against the next clock edge). 

10.9 Sequential drive statements 

A sequential combinatorial drive statement within a user function has no clock associated with it. The 
'cycle time' is derived from any supplied timing parameters; see (8.3.6.1). A sequential clocked drive 
statement within a user function always has a defined clock signal. 

A user function may use any defined combinatorial or clocked drives, which are all independent from 

the point of view of advancing time. The main function, in this code, is an example of a user function 

which uses multiple clocked and combinatorial drives: 

DUT { 

 module TEST( 

      input CLK1, CLK2, CLK3, A, B, C, D, E, F,  

  output Q1, Q2, Q3, G); 

 create_clock CLK1 period 8;    // default timescale (ns) 

 create_clock CLK2 period 13; 

 create_clock CLK3 period 18; 

  

 D1: [CLK1, A] -> [Q1]; 

 D2: [CLK2, B] -> [Q2]; 

 D3: [CLK3, C] -> [Q3]; 

 

 // D, E, F are combinatorial inputs, driving output G, with a maximum 

 // tOD of 4.5ns 

 D -> G = (0.2 : 2.5) 

 E -> G = (0.4 : 3.5) 

 F -> G = (1.0 : 4.5) 

 [D, E, F] -> [G]; 

} 

 

void main() { 

 var a, b, c, d, e, f; 

 ...        // these statements are executed at start-up 

 D1: [.C, a] -> [d]; // advance one CLK1 waveform, CLK2/CLK3 unaffected 

 ...        // these statements are executed at 8ns 

 D2: [.C, b] -> [e]; // advance one CLK2 waveform, CLK1/CLK3 unaffected 

 ...        // these statements are executed at 8+13 = 21ns 

 D3: [.C, c] -> [f]; // advance one CLK3 waveform, CLK1/CLK2 unaffected 

 ...        // these statements are executed at 21+18 = 39ns 

 [a, b, c] -> [d];  // advance 9ns, CLK1/CLK2/CLK3 unaffected 

 ...        // these statements are executed at 39+9 = 48ns 

 wait 5;       // advance 5ns, CLK1/CLK2/CLK3 unaffected 

 ...        // these statements are executed at 48+5 = 53ns 

 report("time is %3.1f\n", _timeNow);  // displays 'time is 53.0' 

} 

Example 110 
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10.10 Triggered drive statements 

A trigger function always has one clock associated with it, and may use only the single triggered drive 
statement associated with the function. The purpose of a triggered drive statement is to test a 
sequence of DUT outputs after a trigger condition has been detected; the statement cannot be used to 
drive inputs to the DUT. 

This code is an example of the use of a trigger function: 

DUT { 

   module Count4USLR            // up counter with synchronous load 

      (input  C, SLOAD, 

       input  [3:0] D, 

       output [3:0] Q); 

 

   create_clock C -period 8 -waveform {2, 5}; 

   @trigFunction [C] -> [Q]; 

} 

 

void main() { 

   trigger trigFunctionA() when all Q == 9; 

   ... 

} 

 

@trigFunction() { 

   ->[10]; 

   ->[11]; 

   ->[12]; 

} 

Example 111 

The trigger condition can, in general, be arbitrary, and so is sampled on the rising edge of the 
associated clock (C). In this case, the condition is when all Q == 9, and trigFunction starts 

execution whenever this condition is detected (6.7). 

trigFunction is entered at the OP and, in this example, the first drive statement (->[10]) is 

executed immediately. The test is carried out as for sequential drive statements: the relevant clock 
edge is identified from any constraints, and a pipelined checker is started on that clock edge. In this 
example, Q is unconstrained, and the test is therefore carried out shortly after the C rising edge. 

10.11 Manual DUT testing at the operating point 

The purpose of a drive statement is to automate the driving of DUT inputs in preparation for a test, and 
the sampling and testing of DUT outputs. However, under some circumstances, these processes may 
also be carried out manually, if required, at an OP. Whether or not a manual test is possible depends 
on the specific timing parameters required, as described below. Note that manual testing is always 
possible when default timing is used (in other words, for untimed delta-delay simulations). 

The code below shows an example of a manual DUT test. This code uses a drive statement to generate 
a clock waveform for a D-type F/F, but explicitly tests the Q output, rather than testing it as part of a 

drive statement: 

DUT { 
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 module DType(input D, CLK, output Q); 

 [CLK];    // just drive the CLK input; don't test any outputs 

 ...declare the timing parameters: CLK period and waveform, tSU, and tCO 

} 

 

void main() { 

 // D, CLK, and Q are external variables, and may be read or written normally 

 D = 1;    // will be correctly driven to meet any setup spec 

 [.C];    // advance one CLK period to the next operating point 

 if(Q == 1)  // manual sample may or may not be correct: see (10.11.2) 

  _passCount++; 

 else 

  _failCount++; 

} 

Example 112 

10.11.1 Input driving 

The DUT inputs may always be driven at an OP (or, in general, at any time before the execution of a 
drive statement), and the inputs are guaranteed to meet any specified setup parameters. This follows 
from the definition of a clock waveform (8.5.3). The compiler will report an error if the clock waveform 
does not meet this requirement. 

10.11.2 Output testing 

Clocked DUT outputs are not guaranteed to be stable at an OP. For a clocked drive, if the setup times 
are relatively large compared to the clock period, and the output delay is also large compared to the 
clock period, then it is possible that the outputs will become valid after the next OP. Consider this 
example code, and the corresponding clock waveform: 

DUT { 

 module TEST(input CLK, A, output B) 

 create_clock CLK period 10 waveform { 3.5 7 } // default timescale (ns) 

 A -> posedge CLK = (3.5 : -1.0)       // tSU is 3.5ns 

 posedge CLK -> B = (1.0 : 7.5)        // tCO is 7.5ns  

} 

Example 113 

These are valid declarations, but the sum of the setup to the clock, and the output delay from the 
clock, is 11.0ns, while the total clock period is only 10.0 ns: 

0 2 4 6 8 10

CLK

A

12

B

 

This is not a problem for a drive statement, since the drive statement pipelines the output test. 

However, when carrying out manual testing, the OP occurs at 10.0 ns, which is before B is guaranteed 

to be valid. 



  

 Page 145/172 

LRM 2.7 © 2008-2021 Maia EDA 

 

If a manual test of the DUT outputs is necessary in these circumstances, then it may be possible to 

insert a wait statement at the OP, to delay for 1 ns. However, in this case, the delay advances beyond 

the next FET (10.8), which will result in a run-time warning being issued. 

10.11.3 Summary of manual testing requirements 

The DUT outputs, and the _vectorCount, _passCount, and _failCount variables, may always be 

'correctly' read at an OP if this condition is satisfied: 

• For all outputs which have synchronous output constraints, the specified tCO occurs before the 

end of the defined clock waveform. 

This condition is clearly not satisfied for the example in (10.11.2), since the output has a tCO of 7.5ns, 

but the time available from the rising clock edge to the end of the waveform is only 6.5ns. 

If this condition is not satisfied, then a drive statement will use a pipelined test to sample the output, 
and to update _vectorCount, _passCount, and _failCount, after the OP. The user does not have 

the ability to do this by executing code at the OP, and so will potentially sample incorrect DUT data. 
However, it may be possible to wait until the data is expected to be valid, and sample it at that time, as 
long as the delay does not advance beyond the next FET. 
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11 RUN-TIME ERROR CHECKING 

There are a number of program errors which cannot be detected until run-time, and which are 
described below. If a run-time error is detected, an error counter (_errorCount) is incremented, and 

an error message is added to the logfile. The program will terminate when the run-time error count 
reaches the value specified as the rte parameter to either mtv or rtv (A4.5). This parameter defaults 

to 1, so the default behaviour is to abort program execution when a run-time error is detected. Under 
some circumstances, it may be desirable and possible to continue execution; if this is the case, rte 

may be given a higher value. 

Note that programmer-defined assertion errors are treated identically to run-time errors, and simply 
increase the error counter; the program will not abort until the rte limit has been reached. 

Run-time errors should not be confused with DUT errors. A run-time error is likely to be the result of a 
programming error and is, as such, 'unexpected'; run-time errors should therefore normally result in a 
program abort. DUT errors, on the other hand, are (potentially) expected errors. 

Run-time errors and warnings cannot be internationalised in 2021.4. 

11.1 Run-time errors 

11.1.1 Array indexing errors 

R100  All array accesses are checked at runtime. Any access outside the declared range of the array is 

converted into an access to location 0, and an error is reported. 

11.1.2 Bitslice indexing errors 

R109  Bitslice indexes are checked at runtime. Any access outside the declared range of the object is 

ignored, and an error is reported. 

11.1.3 Checker Pipeline size errors 

R102  An error is issued if the maximum size of a checker pipeline was specified in a DUT declaration 
(8.5.4), and a drive statement subsequently attempts to access a pipeline level beyond this 
maximum size. If this happens, the first pipeline level is instead read or written. 

11.1.4 Checker Pipeline over-write errors 

R103  A drive statement which specifies a pipeline level writes the expected data into that level of an 
internal checker pipeline. An error will be issued if a subsequent drive statement over-writes this 
expected data (9.2.4.2). 
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11.1.5 Trigger over-run 

R101  There may only ever be one executing instance of a given trigger function. An error will be 
reported if the conditions which led to the initiation of the trigger function again become true 
while the trigger function is already running. If this happens, the new start condition is ignored. 

11.1.6 Last value pipeline errors 

R110  When the history of an object is read with the 'last attribute (4.5.4.6) with a variable clock 

level, the clock level must evaluate to an integer which is in the inclusive range [1,plevel], 
where plevel is the declared pipeline level for that clock (8.5.4). If the clock level is outside this 
range an error will be reported, and an all-X value will be returned. 

11.1.7 Filesystem I/O errors 

R106 File system I/O error, with no system error message 

R107 File system I/O error, with a system error message 

11.2 Run-time warnings 

All warnings are related to potential error conditions with DUT clocks or DUT timing. 

W300 Metavalue on DUT-output clock  

W301 Incorrect period on DUT-output clock 

W303 Waiting for DUT-output clock to start running 

W304 FET missed; skipped one or more cycles to re-synchronise 
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12 PREPROCESSOR 

12.1 Introduction 

The translation of a source file is carried out in two distinct stages. In the first, a preprocessor carries 
out a number of simple textual conversions on the source file. The preprocessor output is then used as 
input to the second stage of translation. This second stage is conventionally known as "compilation". 

Translation is split into two stages for compatibility with other C-like languages (the Maia preprocessor 
is, for most intents and purposes, identical to the C preprocessor1). The primary purpose of pre-
processing is to allow a macro processor to be run as a separate stage before compilation. This macro 
processor allows, among other things, the definition and expansion of macros, and the inclusion of 
additional source files. However, the preprocessor also includes other functionality which is not directly 
related to the macro processing functionality. 

This chapter documents the functionality of the Maia preprocessor, and the macro processing language 
(MPL) syntax. 

The preprocessor is responsible for validating UTF-8 input, replacing trigraph and digraph character 
sequences, removing escaped LF characters ("line splicing"), comment removal, and carrying out macro 
operations in the MPL. The preprocessor stage is not required if all the following conditions are 
satisfied: 

1. The source character set is ASCII (in other words, the source contains no multi-byte UTF-8 
characters) 

2. The source contains no trigraphs or digraphs 

3. The source contains no escaped newlines 

4. The source contains no operations in the MPL 

5. The source contains no comments 

The preprocessor has only minimal understanding of the lexical structure of a Maia program. It 
understands the form of strings, comments, constants, and identifiers, but does not otherwise carry out 
any tokenisation which is Maia-specific. It can therefore, in many situations, be used as a general-
purpose textual preprocessor. However, the preprocessor emits line directives (12.3.3) in its output, to 
allow downstream tools to identify the current source file, and to keep track of the current line number 
in that file. These tools must therefore be capable of either processing, or ignoring, these directives. 

12.2 Preprocessor translation phases 

The preprocessor carries out textual translation of the source file. This translation is split into a number 
of phases, which are carried out in the order defined by the paragraph headings below. The first 9 of 

 

1 The primary differences are that the Maia preprocessor specifies UTF-8 as the input character set, and that there is no 
specific 'tokenisation' phase. 
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these phases primarily carry out a number of simple character substitutions, UTF-8 validation, line 
concatenation, and comment removal.  

The resulting source is then examined for operations in the MPL. These operations include directive 
execution, which is carried out in phase 10, and macro expansion, which is carried out in phase 11. 

Conceptually, each of these phases is carried out separately, over the entire source file, before the next 
phase is started, with the single exception noted in step 2 of 12.3.1.1. However, the preprocessor may 
carry out the translation in any way that preserves the ordering defined by the paragraphs below. In 
particular, it is possible to carry out all pre-processing in a "line filter", operating only on the current 
line of input. When operating in this way, the preprocessor reads a single logical line of input (one or 
more physical lines separated by escaped newline characters), processes that line and then, if 
necessary, outputs that line. 

Three of the initial transformation phases are optional1. These phases are: 

1. Trigraph replacement (12.2.1)  

2. Digraph replacement (12.2.2) 

3. Whitespace compression (12.2.9) 

12.2.1 Trigraph replacement 

The trigraphs are the 3-character sequences listed in Table 21. If trigraph processing is enabled, these 
sequences are replaced by their single-character equivalent2. 

Trigraph Equivalent 
??= # 

??( [ 

??/ \ 

??) ] 

??' ^ 

??< { 

??! | 

??> } 

??- ~ 

Table 21: trigraphs 

When replacement is enabled, all trigraph sequences are replaced, irrespective of context; in particular, 
trigraphs (and digraphs) within strings are also replaced. A trigraph within a string may be preserved by 
replacing a question mark with an escaped question mark: 

report("(???)");   // produces '(?]' 

report("(??\?)");  // produces '(???)' 

 

1 mtv 2021.4 carries out trigraph and digraph replacement, and does not compress whitespace. It does not currently provide a 
mechanism to disable replacement, or to enable compression. 

2 Trigraphs and digraphs may be required when, for example, a keyboard does not provide the equivalent character, or when a 
text editor reserves an equivalent character. 
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12.2.2 Digraph replacement 

The digraphs are two-character sequences which are a more compact equivalent of the most commonly 
used trigraphs, and are listed in Table 22. If digraph processing is enabled, these sequences are 
replaced by their single-character equivalent. 

Digraph Equivalent 
<: [       

:> ] 

<% { 

%> } 

%: # 

%:%: ## 

Table 22: digraphs 

12.2.3 Line terminator conversion 

The code points and code point combinations listed in Table 23 are recognised as a single line 
terminator. 

Code point Name 
U+000A LF: line feed ("newline") 
U+000C FF: form feed 
U+000D, U+000A CR followed by LF 
U+000D CR: carriage return 
U+0085 NEL: next line 
U+2028 LS: Line separator 
U+2029 PS: Paragraph separator 

Table 23: line terminators 

All these code points are converted into a \n character (LF, U+000A). The code point sequence 

U+000D, U+000A is tested before testing for a single U+000D; both are converted into a single LF 
character. 

Any reference to a "line terminator" refers to the one or more code points which are used to terminate 
a user input line either during, or prior to, this phase. Any reference to a "newline" or to "LF" after this 
phase has completed refers to a single \n (LF, U+000A) character. 

12.2.4 Whitespace conversion 

The code points listed in Table 24 are recognised as whitespace. 

One-byte code points 
U+0009 U+000B U+0020 

Two-byte code points 
U+00A0 

Three-byte code points 

U+1680  U+180E U+2000 U+2001 

U+2002 U+2003 U+2004 U+2005 

U+2006 U+2007 U+2008 U+2009 
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U+200A U+202F U+205F U+3000 

Table 24: whitespace 

All these code points, with the exception of HT ("horizontal tab", U+0009), are converted into a SP 
character (space, U+0020). Note that newline is not classified as whitespace. Any reference to 
"whitespace" after this phase has completed refers only to one or more consecutive HT or SP 
characters. 

On completion of this phase, all line terminator and whitespace characters in the source will have been 
replaced with either LF (U+000A), SP (U+0020), or HT (U+0009). 

12.2.5 UTF-8 validation 

Characters are now checked for valid UTF-8 encoding. Any character with an invalid encoding1 is 
rejected, with the exception that the two-byte sequence 0xC0, 0x80 is accepted as an overlong NUL2. 

12.2.6 Line continuation 

Escaped newlines (a LF immediately preceded by a \ (U+005C) character) are stripped from the input, 

merging the current "physical" line with the next line to form a single "logical" line. A warning is issued 
if a \ character is the last non-whitespace character on the line, and is followed by one or more 

whitespace characters. 

Line continuation is required only when it is necessary to split a preprocessor directive, or a string, over 
multiple physical lines3. 

12.2.7 String preservation 

Strings are arbitrary character sequences which are enclosed in double quotation marks (", U+0022). 

Strings are recognised during this phase and are preserved from further preprocessor transformations; 
they are passed unmodified to the output. The entire string must appear on a single logical line of 
input; an error is raised if the string has no closing quotation mark on the current logical line4. 

Note that the filename argument to the #include directive may be specified as a string (12.3.2). This 

string is treated in the same way as any other string, and is protected from further transformation5. 

 

1 Examples of invalid characters are characters which have an invalid byte count, or which have an overlong encoding, or 
which code more than 21 bits, or which have an invalid continuation byte. 

2 This exception is known as 'modified UTF-8'; it allows a NUL character to be placed into a string. 

3 The compiler itself is "free-form" and never requires input to be split over multiple lines using an escaped LF. "Line splicing" is 
relevant only to the preprocessor. 

4 Strings may be continued over multiple lines either by inserting an escaped LF within the string itself, or by placing adjacent 
strings on separate lines of input. In the former case, the preprocessor removes the escaped LF; in the latter, the compiler 
concatenates the adjacent strings. 

5 For the C preprocessor, the string argument is treated as a special case and may later be macro-expanded.  
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12.2.8 Comments 

Both block and line comments are replaced with a single SP character. 

12.2.9 Whitespace compression 

If whitespace compression is enabled, the preprocessor replaces multiple consecutive SP characters 
with a single SP character. 

12.2.10 Directive processing 

Directives are instructions in the MPL, and are preceded by a # (U+0023) character. Directives are 

recognised and executed in this phase; see 12.3.  

Phases 10 and 11 require partial tokenisation of the input in order to find identifiers, and to evaluate 
any arithmetic expressions which control conditional inclusion. However, this tokenisation is not 
required if there are no directives in the source, and is not treated as a separate phase. 

12.2.11 Macro expansion 

In the final phase, macros which have previously been defined by a #define directive are expanded; 

see 12.4. This phase differs from the previous phases in that it cannot be carried out in a single pass on 
the current line of input. Text which has been macro-expanded is rescanned until no more expansion is 
possible; this may require multiple passes over part or all of the current input line. 

12.3 Preprocessor directives 

If the first non-whitespace character on a line is # (U+0023), then the line is potentially a preprocessor 

directive. Any whitespace after the # character is ignored, and the remainder of the line is processed as 

a directive1, unless one of the following three conditions is true: 

• If the next character is a LF, this line is ignored and is not copied to the output (in other words, it 
is stripped from the input). This is a null directive; 

• If the next character is ( (U+0028), then the line is not considered to be a directive2 (and is 

therefore subject to macro expansion in phase 11); 

• If the next 6 characters are pragma, followed by whitespace, then the entire line is protected 

from further transformation and is passed unmodified to the output3. This is a pragma directive; 
see 12.7. 

 

1 A directive must therefore appear on a single logical line of input. If it is necessary to split a directive over multiple physical 
lines, it can be continued either by a block comment which extends past the end of the line, or by escaping the line terminators 
with a \ character (12.2.6). 

2 #( introduces a module parameter list in a module declaration; see 8.2.1. 

3 Macro expansion therefore does not occur inside a #pragma directive. 
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The line is otherwise required to be a pp-directive. 

Syntax 

pp-directive : 

  pp-cond-inclusion 

  pp-control \n 

 

pp-control : 

  pp-include 

  pp-line 

  pp-warning 

  pp-error 

  pp-define 

  pp-undefine 

12.3.1 Conditional inclusion directives 

A directive which has the form of one of the following 

 # ifdef  pp-identifier ... 

 # ifndef pp-identifier ... 

 # if     pp-condition  ... 

introduces a conditional inclusion directive (a pp-cond-inclusion). The conditional inclusion directives 
allow a portion of the source file (a block, or pp-cond-block) to be conditionally included or excluded 
from pre-processing, according to the evaluation of a condition. The condition is evaluated as follows: 

1. for the #ifdef directive, the condition evaluates to true if pp-identifier is currently defined as a 

macro name (in other words, a definition is currently in scope), and false otherwise. This 
condition is equivalent to #if defined pp-identifier. 

2. for the #ifndef directive, the condition evaluates to true if pp-identifier is not currently defined 

as a macro name, and false otherwise. This condition is equivalent to #if !defined pp-

identifier. 

3. for the #if and #elif directives, pp-condition is evaluated as an arithmetic constant 

expression, using the procedure defined in 12.3.1.1. The condition evaluates to false if the 
expression evaluates to 0, and true otherwise. 

Each directive in a conditional inclusion directive (a pp-cond-inclusion) is checked in order; only the 
block associated with the first condition that evaluates true is included. If none of the conditions 
evaluates to true, and there is a #else branch, the block associated with the #else branch is 

included. If there is no #else branch, none of the blocks associated with the pp-cond-inclusion is 

included. 

If pp-cond-block is excluded as a result of a condition evaluation, the preprocessor carries on analysing 
the text in the excluded pp-cond-block until it finds the matching pp-elif-part, pp-else-part, or pp-endif-
part. The preprocessor is required to complete processing through to phase 10, and so will potentially 
report any errors detected in these phases, despite the fact that the block has been excluded. However, 
the preprocessor will not generate any output for these lines. 
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Syntax 

pp-cond-inclusion : 

  pp-if-part pp-elif-partsopt pp-else-partopt pp-endif-part 

 

pp-if-part : 

  # ifdef  pp-identifier \n pp-cond-blockopt 

  # ifndef pp-identifier \n pp-cond-blockopt 

  # if     pp-condition  \n pp-cond-blockopt 

 

pp-elif-parts : 

  pp-elif-parts pp-elif-part 

 

pp-elif-part : 

  # elif  pp-condition   \n pp-cond-blockopt 

 

pp-else-part : 

  # else                 \n pp-cond-blockopt 

 

pp-endif-part : 

  # endif \n 

 

pp-cond-block : 

  pp-cond-block pp-cond-block-part 

 

pp-cond-block-part : 

  pp-cond-inclusion 

  pp-control \n 

  text-line  \n 

12.3.1.1 Condition evaluation 

pp-condition is evaluated in four steps, in the order defined by the numbered items below. 

1. The expression is examined for unary operators of the form  

defined pp-identifier 

or 

defined ( pp-identifier ) 

this operator evaluates to 1 if pp-identifier is currently defined as a macro name, and 0 

otherwise. 

2. Any macro invocations in pp-condition are expanded, using the procedure defined in 12.4 
below. This replacement occurs before phase 11, and is the only violation of the evaluation-
order rules defined in 12.21. 

3. Any remaining pp-identifier tokens in pp-condition are replaced with 0. 

 

1 The C preprocessor also allows the argument of a #include directive to be macro-expanded before source file inclusion is 

carried out. This feature is not supported. Allowing this exception would not add any functionality that cannot easily be 
achieved while keeping strict phase ordering. 
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4. The resulting expression should contain only whitespace, parentheses ( and ), integer 

constants in the form of a Cinteger (2.7.1), and the operators defined in Table 25. The 
operators are listed in precedence order, with the highest precedence operators at the top of 
the table, and operators of equal precedence on the same row of the table. These operators are 
a subset of the full set of Maia operators, with the same precedence and associativity. 

The expression is evaluated using 64-bit precision, and an error is raised if any Cinteger 
constants cannot be represented in 64 bits. 

On completion, the pp-condition evaluates to false if the expression evaluates to zero, and true 

otherwise. 

 Operator Associativity 

Unary ! ~ + - right to left 

Multiplicative * / %  left to right 

Additive + -   left to right 

Shift << >>   left to right 

Comparison < <= > >= left to right 

Equality == !=   left to right 

Binary AND &    left to right 

Binary XOR ^    left to right 

Binary OR |    left to right 

Logical AND && and   left to right 

Logical OR || or   left to right 

Table 25: MPL operators 

12.3.2 include directives 

The include directive inserts the contents of the named file into the current source file, at the point at 
which the include directive appears. A line directive is also inserted prior to the first line of the included 
file, and after the last line of the included file, to allow the compiler to correctly track source file 
locations. There is no practical limit to the level at which include directives may be nested; the current 
source file is always closed before inserting the included file, and is re-opened when the included file 
has been processed and closed. 

The specified filename may be either a rooted absolute filename, or a relative filename. When the 

"filename" syntax is used, relative filenames are searched for in a location relative to the current 

source file. If the required file is not found in this location, it is searched for in the same directories 
which are searched for the <filename> syntax. 

The <filename> syntax is used when searching for system files.  No system file directories are 

specified for mtv 2021.4, and <filename> is  treated identically to "filename". 

Syntax 

pp-include : 

  # include <filename> 

  # include "filename" 
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12.3.3 Line directives 

A line directive may be used to change the preprocessor's record of the current line number and, 
optionally, the current filename. This directive might be of use, for example, for external tools which 
themselves generate or process source code. The preprocessor also generates line directives in its own 
output; the compiler uses this information when generating warnings and errors. 

The line number is supplied as line-number, which should be a decimal integer. The preprocessor will 
restart line numbering such that the next input line after this directive will be considered to have this 
line number. 

The filename is optional; if it is not provided, the current filename remains unchanged. 

Syntax 

pp-line : 

  # line line-number "filename"opt 

 

line-number : pp-integer 

12.3.4 Warning and error directives 

The preprocessor issues a warning when it encounters a warning directive, and an error when it 
encounters an error directive. If warning-text or error-text is present, it is copied verbatim to the 
warning or error output, respectively. 

Syntax 

pp-warning : 

  # warning warning-textopt 

 

pp-error : 

  # error error-textopt 

12.3.5 define directives 

12.3.5.1 Introduction 

A macro definition associates the specified replacement text (or "macro body") with an identifier (the 

"macro name"). There is a single namespace for macro names1. The identifiers defined, and, and or 

may not be used as macro names. 

The scope of this association, or macro definition, lasts until a corresponding #undef directive for the 

same macro name, or until pre-processing completes if no #undef directive is found. The #undef 

directive need not occur in the same source file.  

Within the scope of a macro definition, any valid invocation of the macro is replaced by the 
corresponding replacement text during phase 11 (see 12.4 below). Whitespace surrounding the 
replacement text is not significant, and is removed before the replacement occurs. 

 

1 It is therefore not possible to define an object-like and a function-like macro with the same name, or to define multiple 
function-like macros with the same name, even if they have different numbers of arguments.  
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The replacement text may be empty; in this case, the macro invocation is simply removed from the 

output during the replacement phase.  

Syntax 

pp-define : 

  object-like-macro-defn 

  function-like-macro-defn 

 

object-like-macro-defn : 

  # define macro-name replacement-text 

 

function-like-macro-defn : 

  # define macro-name-lparen formal-param-list ) replacement-text 

 

macro-name : pp-identifier 

 

formal-param-list : 

  formal-param 

  formal-param-list , formal-param 

 

formal-param : pp-identifier 

 

macro-name-lparen :: {pp-identifier}( 

 

replacement-text :: .* 

12.3.5.2 Object-like macros 

A directive of the form 

# define macro-name replacement-text \n 

defines an object-like macro with name macro-name, and with associated replacement text 
replacement-text. Subsequent occurrences of the macro name within the scope of the definition are 
replaced with the associated replacement text during phase 11; see 12.4 below. 

12.3.5.3 Function-like macros 

A directive of the form 

# define macro-name-lparen formal-param-list ) replacement-text \n 

defines a function-like macro. A function-like macro definition is syntactically similar to a function 
definition. The macro name is given by macro-name-lparen, which is the macro name, immediately 
followed by a ( character, with no intervening whitespace. If there is whitespace between the macro 

name and the ( character, the directive is instead interpreted as an object-like macro definition: 

#define foo bar1 bar2 // object-like: 'foo' is replaced with 'bar1 bar2' in phase 11 

 

// function-like: 'a(1,2)' is replaced with '((1)+(2))' in phase 11  

#define a(x, y) ((x)+(y)) 

 

// object-like: 'b(1,2)' is replaced with '(x, y) ((x)+(y))(1,2)' in phase 11 

#define b (x, y) ((x)+(y)) 

Example 114 



  

 Page 158/172 

LRM 2.7 © 2008-2021 Maia EDA 

 

Within the definition, an optional comma-separated list of identifiers (formal-param-list) names the 
"formal parameters" to the macro. The scope of a formal parameter lasts from its introduction in the 
parameter list to the end of the macro definition (in other words, to the newline which terminates the 
current logical line). The formal parameter names must be unique within the macro definition. 

Subsequent occurrences of the macro name, when within the scope of the definition and when followed 
by a list of actual parameters enclosed in parentheses, are replaced with the associated replacement 
text during phase 11; see 12.4 below. 

12.3.5.4 Macro redefinition 

Within the scope of a macro definition, an object-like macro name may be redefined only if the 
replacement is also an object-like macro, and the replacement text (including any whitespace inside the 
replacement text) is identical. A function-like macro may be redefined only if the replacement is a 
function-like macro with the same number of parameters, and the parameters and replacement text 
(including any whitespace inside the replacement text) are identical. 

12.3.6 undef directive 

If pp-identifier is currently defined as a macro, #undef pp-identifier will remove that definition. 

The directive is ignored if pp-identifier is not currently defined as a macro. 

Syntax 

pp-undefine : 

  # undef pp-identifier 

12.4 Macro expansion 

Macro expansion takes place in phase 11. The source is tokenised (12.5) to find any occurrences of a 
pp-identifier which is an in-scope macro name. The macro invocation is then replaced by the 
corresponding replacement text, subject to the constraints described in this section. 

12.4.1 Self-referential macros 

A macro may not, directly or indirectly, reference itself. If a macro invocation is found with the same 
name as a macro which is currently being replaced, then the invocation is ignored and is not expanded.  
In general, when the preprocessor encounters a pp-identifier which has previously been defined as a 
macro name, it may already be in the process of recursively expanding a stack of pp-identifiers. The 
current pp-identifier is not expanded if it appears anywhere in this stack. This is not treated as an error 
condition. 

 

#define FOO     BAR 

#define BAR     FOO 

#define A(x, y) BAR 

 

BAR        // 2-level expansion, but stops after 1 level; outputs FOO 

A(1,2)      // 3-level expansion, but stops after 2 levels; outputs FOO 

Example 115 
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12.4.2 Object-like macro expansion 

A pp-identifier which is currently defined as an object-like macro is replaced with the corresponding 
replacement text1, unless the preprocessor is currently replacing another instance of the macro named 
by pp-identifier (12.4.1). 

When replacement of the pp-identifier has completed, the scan process restarts at the first character of 
the replacement text. The replacement text may therefore contain further complete or partial 
invocations of object- or function-like macros, and these invocations are themselves replaced, until no 
further replacements are possible. 

#define FOO       BAR(1, // 'FOO' expands to a partial invocation of 'BAR' 

#define BAR(x, y) 2*x+y 

FOO  

    3)         // eventually expands to '2*1+3' 

Example 116 

12.4.3 Function-like macro expansion 

If the preprocessor identifies a pp-identifier which is currently defined as a function-like macro, it 
carries on to locate the next character which is not whitespace and which is not a newline. If this 
character is (, the identifier is treated as an invocation of a function-like macro; it is otherwise ignored, 

and copied to the output without modification. 

The text between the outermost pair of matching parentheses following the macro name forms the 
macro argument list (the "actual parameters"). It is an error if the source does not contain a closing 
parenthesis after the argument list. 

Individual parameters are separated by a comma character, unless that comma character is enclosed 
within a pair of parentheses which are not the outer-most pair of parentheses2. The number of 
arguments (including empty arguments) must match the number of formal parameters in the macro 
definition3. Whitespace before or after an argument is not significant, and is not substituted into the 
replacement text. If an argument is not present, or is composed entirely of whitespace, then it is 
considered to be an "empty" argument, and the corresponding formal parameter is omitted from the 
expanded replacement text. 

Within the text forming an invocation of a function-like macro, any newline characters following the 
macro name are treated as whitespace. An invocation of a function-like macro may therefore appear on 
more than one logical line of source. 

#define A(x) x+y 

A(1)  // expands to '1+y' 

A  // not a macro invocation; the preprocessor outputs 'A' 

A()  // an invocation of 'A' with one empty argument; preprocessor outputs '+y' 

A(1,2) // an error: an invocation of 'A' requires exactly one argument 

 

 

1 Strings and comments are processed in phases 7 and 8, respectively. Macro expansion therefore does not occur in either 
strings or comments. 

2 An argument may therefore contain matched pairs of parentheses, but not unmatched parentheses. 

3 2021.4 does not support variable argument lists. 
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#define G(x,y) x+y 

1G(,)2   // 2 empty arguments; preprocessor expands G to '+', and outputs '1+2'(1) 

G(,2)   // preprocessor outputs '+2' 

G(1,  )   // preprocessor outputs '1+' 

G(1, 

  2)    // preprocessor outputs '1+2' 

G((1,2),3) // preprocessor outputs '(1,2)+3' 

Example 117 

12.4.3.1 Argument substitution 

The replacement text is scanned for occurrences of the macro's formal arguments. If a formal 
argument is found and is preceded by a # character, the corresponding actual argument is stringified; 

the result is then substituted into the replacement text in place of the formal argument and the 
preceding # character (12.4.3.2). 

Otherwise, the actual argument is macro-expanded, and is then substituted into the replacement text in 
place of the formal argument (this is known as argument prescan). This substitution is carried out 
recursively, in the same way as for any other expansion; however, it is only the argument itself which is 
expanded (the substitution process will not attempt to read any text beyond the comma character or 
closing parenthesis which terminates the argument). 

When argument substitution has completed, the entire replacement text is scanned for further 

replacements. This process continues until no more expansion is possible. 

#define E      D 

#define C(x,y) [x+y] 

#define D      C(1,2) 

#define F(a,b) a+#b 

 

// the first 'E' in this invocation is macro-substituted; the second is stringified. 

// the preprocessor eventually outputs '[1+2]+"E"' 

F(E, E) 

Example 118 

12.4.3.2 The # operator 

When a formal parameter in the replacement text is preceded by a # character the corresponding 

actual is not macro-expanded, and is instead enclosed in double-quote (", U+0022) characters before 

substitution into the replacement text. Leading and trailing whitespace around the actual argument is 
ignored. 

The stringified actual is not subject to further macro replacement. 

#define FOO  BAR 

#define G(a) #a 

G( FOO )    // preprocessor outputs '"FOO"', not '"BAR"' 

 

#define TEST(expr)                       \ 

  do {                                   \ 

 

1 The C preprocessor parses 1G as a "preprocessing number", and so does not recognise a macro in this case; it instead 

outputs 1G(,)2 
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    if(!( expr ))                        \ 

      report("test " #expr " failed\n"); \ 

  } while(0) 

 

// this invocation is replaced by: 

//   do { if(!( a+b ) report("test " "a+b" " failed\n"); } while(0); 

TEST 

  (a+b); 

Example 119 

12.5 Tokenisation 

The preprocessor has no specific tokenisation phase. However, tokenisation is required during phases 

10 and 11, for the following reasons: 

1. Macro names must be identifiers (a pp-identifier). A pp-identifier is therefore required as the 
operand of the #ifdef, #ifndef, and #undef directives, and as the operand of the defined 

operator. During phase 11, all occurrences of a pp-identifier are compared against macro names 
which are currently in scope. 

2. Macro formal parameters must be a pp-identifier. 

3. The controlling expression of the #if and #elif directives (12.3.1) must be evaluated as a 

constant expression. 

In these contexts, the preprocessor classifies the remaining unprotected1 input into Vinteger tokens, 
Cinteger tokens, pp-identifier tokens, MPL operator tokens, and punctuator tokens2, where: 

i. A Vinteger is a preprocessor Verilog-style integer, and is defined identically to a Maia Vinteger 

(2.7.2); 

ii. A Cinteger is a preprocessor C-style integer, and is defined identically to a Maia Cinteger 
(2.7.1); 

iii. A pp-identifier is a preprocessor identifier, and is defined identically to a Maia identifier (2.5); 

iv. The MPL operators are the operators defined in Table 25, together with parentheses ( and ); 

v. A punctuator is a minimal-length sequence of characters which cannot be classified as one of 
the other types above. 

 

1 Protected input includes strings and pragma directives. 

2 The preprocessor does not identify floating constants (2.7.3) in 2021.4. Any part of a floating constant which has the same 
form as an identifier is therefore subject to macro expansion. 
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12.5.1 Preprocessor Identifiers 

A pp-identifier is a preprocessor identifier, and is defined identically to a Maia identifier (2.5): 

Syntax 

pp-simple_identifier ::   [{ident-alpha}_][{ident_alpha}_0-9]* 

pp-extended_identifier :: \\[^\n]+\\ 

ident-alpha :: 

   [U+0061-U+007A] | [U+0041-U+005A] |  

   [U+0080-U+0084] | [U+0086-U+2027] | [U+202A-U+10FFFF] 

pp-identifier : 

   pp-simple_identifier 

   pp-extended_identifier 

12.5.2 constant expression evaluation 

The controlling expression of the #if directive is evaluated as a constant expression (12.3.1.1). The 

expression must contain only whitespace, parentheses ( and ), the defined operator, pp-identifiers, 

Cintegers, and the operators defined in Table 25. 

12.6 Predefined macro names 

The following macro names are predefined: 

Name Value 

__MTV__ 1 

__MAIA__ 1 

__MTV_VERSION__ The mtv compiler version, as a 32-bit integer, in the same format as the 

predefined _version variable (2.9). __MTV_VERSION__ currently has the 

same value as _version, but this is not guaranteed. 

__MAIA_VERSION__ Currently identical to __MTV_VERSION__  

__VHDL_TARGET__ Will be set to 1 if the code generator is producing VHDL output, or 
undefined otherwise 

__VERILOG_TARGET__ Will be set to 1 if the code generator is producing Verilog output, or 
undefined otherwise 

__MSWINDOWS__ Will be set to 1 if running on Windows, or undefined otherwise 

__UNIX__ Will be set to 1 if running on a Unix-like system, or undefined otherwise 

__FILE__ The current source file name, as a string 

__LINE__ The current source file line number, as a decimal integer 

__DATE__ The compilation date, as a string in the format "mmm dd yyyy" (for 
example, "Apr 22 2021") 

__TIME__ The compilation time, as a string in the format "hh:mm:ss" (for example, 
"17:20:56") 

Table 26: predefined macro names 
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12.7 Pragma directives 

Any directive of the form #pragma is ignored by the preprocessor, and is copied directly to the output. 

The Maia pragma directives are therefore handled by the compiler, and not by the preprocessor; they 
are, however, documented here for clarity. The supported pragmas are: 

#pragma _DefaultWordSize n 

i) Sets the size of implicit variables, and variables declared using the int keyword, to n bits. 

Unsized integer constants are also scanned to the number of bits specified by 
_DefaultWordSize. n may be any value from 1 up to a compiler determined maximum, 

which will be at least 224. _DefaultWordSize itself has a default value of 32. 

#pragma _Implicits n 

Enables (n = 1) or disables (n = 0) the use of implicit variables (variables which auto-declare 

themselves on first use). Implicits are disabled by default. 

#pragma _StrictChecking n 

Sets the level of static type checking which is carried out during compilation; see (3.1). Level 0 
defines a level of weak checking; this is strengthened as n is increased. The default level is 1. 

The _Implicits, _StrictChecking and _DefaultWordSize pragmas are program-wide, and 

should appear once in the source code, before any functions are analysed. 
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A1 BUILT-IN FUNCTIONS 

Built-in functions are automatically declared when they are first encountered in the source code, and so 
cannot be overloaded by user-defined functions. The function name otherwise has no special 
significance: 

void main() { 

   int seed = 1, lo = -2, hi = +2; 

   report("rand() is %d\n", rand(seed,lo,hi));  // prints: rand() is -2 

 

   int rand = 4; 

   report("rand is %d\n", rand);                // prints: rand is 4 

} 

Example 120 

A1.1 int rand(int &seed, int lo, int hi) 

Description 

The rand function computes a sequence of pseudo-random numbers in the closed interval [lo,hi]. If 

lo is greater than or equal to hi, the function returns lo. The seed parameter is modified by the 

function, and so must be an lvalue. 

Returns 

The rand function returns a pseudo-random integer. 

A1.2 int rand(int &seed) 

Description 

The rand function, with a single parameter, computes a sequence of pseudo-random numbers in the 
closed interval [-231,231-1]. The function is otherwise identical to rand (A1.1). 

Returns 

The rand function returns a pseudo-random integer. 
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A2 PROGRAM EXIT CODE 

A Maia program will return an integer value on completion if main has been declared with an int 

return type. In this case, a value may be returned by: 

• Returning from main with a value (return 10, for example); 

• Completing main without executing a return statement, in which case the current value of 

result is returned. result has a default value of 0 for functions which return int; 

• Executing an exit statement with a value (exit(10), for example). It is illegal to call exit 

without a value if main is declared to return an int. 

Otherwise, main must be declared with a void return type. In this case, it is illegal to return a value 

from main, and exit must be called without a parameter. 

The value, if any, returned by the program is not returned to the operating environment. A Maia 
program is executed on a simulator. If the simulator is a Verilog simulator, Maia terminates the 
testbench in the normal manner, by calling $finish (the optional argument is supplied as 0, which 

means ‘print nothing’). The simulator will then terminate and return a value to the operating 
environment, but this value is not under the control of the testbench: the simulator will normally return 
0 if it completed its own internal operation without error, and a non-zero value otherwise1. Even if it 
was possible to return a value directly to the environment, that value is restricted to an 8-bit unsigned 
integer on most Linux systems (or 32-bit signed on Windows). 

The value returned by main is therefore added to the simulation output, as message L102, to avoid 

these issues. The default L102 message is "Test completed with exit code n"2. The user can parse the 
log file to find this message, and retrieve the integer exit code, if necessary. 

 

1 SystemVerilog adds a $fatal system task, which “shall generate a run-time fatal error, which terminates the simulation with 

an error code”. Although this implies the return of an error code to the environment, there is no way to set that error code. 

2 Message L102 can be changed as required by modifying it in the i18n.txt internationalisation file. 
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A3 GLOSSARY 

Aggregate object   A compound object which is a collection of scalar objects. If the scalar objects 
are all of the same type then the collection is homogeneous (an array); 
otherwise, the collection is heterogenous (a structure).  

Arithmetic object  Any object of an arithmetic type. 

Arithmetic type  A type which supports arithmetic operations: int, bit, and var. If 

_StrictChecking is less than 2, bool is a synonym for bit1, and so is also 

an arithmetic type. 

Assignment Compatible Objects lhs and rhs are assignment-compatible if the expression lhs=rhs is 
allowable.  

Associativity  Operator associativity determines the order in which the sub-expressions in a 
full expression are evaluated, when the operators have the same precedence. In 
the expression a=b*c/d, for example, * and / have the same precedence, and 

associate left-to-right; the expression is therefore evaluated as a=(b*c)/d. 

Bit    A unit of data storage sufficient to hold a bit1 or var1 object. A bit1 may 

take on one of the values 0 or 1; a var1 may take on one of the values 0, 1, X, 

or Z. 

Constant    A lexical element which represents a numeric or boolean value. A constant is not 
an object. In some circumstances, however, the compiler can be considered to 
create a temporary object which is initialised with the value of the constant. 

Constant expression  An arithmetic expression which can be evaluated during compilation; any 
combination of constants and operators. With few exceptions, a constant 
expression can be used wherever a constant is required in the syntax. 

Data object    Any object of a data type. 

Data type   A type which can be considered to hold 'data': the arithmetic types, bool, and 

kmap. 

Declaration   A declaration specifies the interpretation given to an identifier; a declaration 
that also reserves storage is a definition. A type (structure or stream) 
declaration does not create storage for a new object; it simply tells the compiler 
how much storage will be required, should an object of that type be defined. 

Definition   A declaration which reserves storage and creates an object. 

Field     See member 

FET    First Event Time; the time at which the first event occurs in the event queue 
that makes up a single clock cycle (10.8) 

ivar object    Any object of an int, bit, or var type 
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LHS     Left hand side 

lvalue     A writeable object; the LHS, or destination, of an assignment 

Member    An entity (member, or field) inside a structure or stream; see also tag 

Object    A region of data storage, which may be readable, writeable, or both. If the 
object is readable, it yields a value when read. Every object has an associated 
type, which determines the interpretation of the value stored in the object, and 
the operations allowed on that object. 

OP    Operating point 

Precedence   Operator precedence determines the order in which the sub-expressions in a full 

expression are evaluated. In the expression a=b+c*d, for example, * has a 

higher precedence than +, and the expression is therefore evaluated as 

a=b+(c*d). See also associativity. 

Rank    The rank of an expression or object is defined as its dimensionality. If a is a 3-

dimensional array, for example, it has rank 3. The expression a[i] has rank 2; 

the expression a[i][j] has rank 1; and the expression a[i][j][k] has rank 

0. Any scalar object has rank 0. 

Reference   A reference is an alternative name, or alias, for an object. An object has a single 
primary name, but may have any number of additional aliases for that name 

RHS    Right hand side 

rvalue   A readable object or expression; the right-hand-side of an assignment 

Scalar   An object which is not an array. The term scalar, as used here, relates to 
dimensionality (a scalar has rank 0), and not to whether or not an object is an 
aggregate; a single structure, for example, is a scalar 

Scope   For an object which has an identifier, the scope of that identifier is the region of 

the source code in which the identifier may be used to access that object 

Tag     The name associated with a structure or stream declaration; for example, this 
declaration has the tag a, and has one member, b: 

     struct a { int b; } 

Tick    A single time step during execution of a discrete event simulator. If the simulator 
is running with a minimum precision of 1ns, for example, then it will carry out 
simulation activity at 1ns, and then advance time by 1ns, and repeat. In practice, 
time is actually advanced to the next multiple of 1ns at which future activity is 
scheduled 

void expression  A void expression has no value (a call of a function which has been declared to 
be of type void, for example). If an expression of any other type is evaluated as 

a void expression, its result is discarded; in this case, the expression is evaluated 
solely for its side-effects. 
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A4 MTV 

This Appendix documents features and issues which are specific to mtv, or the current implementation 
of mtv or a specific code generator, but which are not part of the language specification. 

A4.1 Preprocessor 

A number of macro names are predefined, and are listed in Table 26 above. Macros may be defined or 
cancelled on the mtv (or rtv) command line, with these switches: 

-D NAME    Predefine NAME as a macro, with definition '1' 

-D NAME=DEFINITION Predefine NAME as a macro, with definition DEFINITION 

-U NAME    Cancel any previous definition of NAME,  either built-in or provided with a 

–D option 

The –D and –U options are processed in the order in which they appear on the command line. The 

MTV_CPPOPTIONS environment variable may also be used to provide additional options to the 

preprocessor. This environment variable is processed before any additional –D or –U options. 

The target language is set by mtv's –target option, or by the suffix of the output file; it is not 

overridden by the __VHDL_TARGET__ and __VERILOG_TARGET__ macros, which should not normally 

be changed. 

mtv does not directly accept a –I switch to specify include file directories. This switch should instead 

be specified in the CPP_OPTIONS environment variable. 

A4.2 Environment variables 

Table 27 lists the environment variables which are understood by mtv. The compiler may not function 
(or may appear not to function) if these variables are incorrectly set; they should be checked after 
installation.  

Variable name Default Function 

MTV_PPENABLE 1 Enable (1) or disable (0) the preprocessor stage 

MTV_KEEPCPP 0 The preprocessor output may be retained by setting MTV_KEEPCPP 

to 1. The output will be in a temporary file with an 'mtv_' prefix, 
either in the current directory, or a system-defined temporary 
directory. 

MTV_CPPOPTIONS Unset This string is appended to the cpp command line; it may be used to 
pass any macro definitions to the preprocessor. 

MTV_INPUT_FILE test.tv The name of the top-level input file; this variable is ignored if mtv is 
invoked with the '-i' switch 

MTV_OUTPUT_FILE test.v The name of the testbench output file; this variable is ignored if mtv 

is invoked with the '-o' switch 
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MTV_COPY_STDOUT 1 If set, the compiler and testbench output is copied to 'stdout', as 

well as being written to the logfile. Set to 0 to disable. 

MTV_LOGFILE mtv.log The name of the compiler and testbench logging file 

Table 27: mtv environment variables 

rtv, the compiler driver, also requires a number of environment variables. These variables have no 
default values; they must be set to valid values during installation. These variables are listed in Table 
28. 

Variable name Default Function 

RTV_CONFIG  The full pathname of the rtv configuration file 

RTV_SIMULATOR  The name of the required simulator. This name refers to an entry in 
the configuration file 

MAIA_COMPILER  The mtv executable invoked by rtv 

Table 28: rtv environment variables 

A4.3 Compiler logging 

All output from mtv, and from a running testbench, is written to a logfile. The output may also 
optionally be displayed on stdout. Logging is controlled by a number of environment variables; see, in 
particular, MTV_COPY_STDOUT, and MTV_LOGFILE. These variables should only be changed if 

necessary; the compiler may appear not to function if logging is disabled. 

A4.4 Sizing iterations 

mtv must determine the maximum possible size of any unconstrained formals or function return values. 
In general, this involves running a sizing pass which analyses chains of assignments to unconstrained 
objects. Almost all programs will complete this sizing within a single iteration, but in some complex 
circumstances multiple iterations will be required. mtv defaults to a maximum of 10 iterations before 
reporting an error (E191). The maximum number of iterations may alternatively be set with mtv's –si 

switch. '-si 20', for example, sets the maximum number of iterations to 20. 

If sizing does not complete within the default number of iterations it is likely that the user code 
contains an erroneous loop involving a cycle of chained unconstrained objects. 

A4.5 Assertion and runtime failures 

The –rte n switch sets the maximum run-time error count to n.  The HDL code will  terminate when  

this count is reached.  Run-time  errors occur for conditions such as  out-of-range array  accesses  and  
assertion  failures,  but  do not include DUT failures. The default value of n is 1; in other words, a 

program will, by default, terminate when it encounters any assertion or run-time error. 
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A4.6 DUT failures 

The –fail n switch sets the maximum DUT failure count to n.  The HDL code will  terminate when  

this count is reached.  A DUT failure is defined as any failure of the DUT to match an output expected 
from a drive statement; it is not a program error. The default value of n is 20. 

A4.7 Verilog code generator limitations 

mtv's Verilog code generator1 has a number of limitations, which are described below. The compiler will 

issue a warning or an error when it detects these conditions, unless noted otherwise. 

A4.7.1 Floating-point operations 

All the floating-point operations are supported for expressions which can be statically evaluated. 
However, Verilog supports only a 64-bit floating type, while Maia supports three of the IEC 60559 
types. Any Maia expression which requires runtime evaluation, and which cannot be fully evaluated 
using the Verilog 64-bit type, will be reported as an error during compilation. 

A4.7.2 report statements 

Verilog simulators have widely differing support for width and precision specifications. Both are required 
to be supported for floating-point conversions, but the standard says nothing about the remaining 
conversions. '%6d', for example, correctly produces an integer in a 6-character field for two popular 

simulators, but produces garbled output on a third. Maia produces a warning rather than an error when 
it detects this condition; you will have to check whether the output produced by your simulator is 
acceptable, and modify the code if not. 

Individual Verilog simulators also have widely differing support for the underlying $write system task, 

so report statements with complex formatting requirements are likely to display differently on different 
simulators. No error or warning messages are generated if the output does not conform to the report 

specification. 

A4.7.3 Mode 2 stream conversion specifications 

Mode 2 stream conversion specifications (3.7.11.2.3) cannot be fully supported, because of the 
limitations of the underlying $write system task; see (A4.7.2). 

A4.7.4 Recursion 

The Verilog code generator does not support recursive function calls2 (in other words, a Maia function 
may not directly or indirectly call itself). mtv's '-cg' switch produces a call graph, which may be viewed 
with graphviz; the graph can be used to analyse illegal function call sequences. 

 

1 The code generator produces Verilog which conforms to IEEE1364-2005. This was the final LRM release for 'plain' Verilog. 
No SystemVerilog code is generated. 

2 While Verilog-2005 does support 'auto' functions, this support is not sufficient to allow recursive function calls, except in 
simple cases. 
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A4.7.5 Scheduling 

Verilog's scheduling model is ambiguous, particularly with respect to the issue of the atomicity of 
different 'processes'. The LRM doesn't explicitly state that processes should de-schedule only at defined 
points, and leaves the option open for arbitrary process interleaving. 

If the scheduler is implemented as defined, then it potentially has a number of undesirable effects (and 
no benefits). It is unlikely, for these reasons, that any vendor actually uses an interleaved scheduling 
model.  

If a specific simulator does implement interleaved scheduling, then Maia is potentially affected if two or 
more concurrent functions attempt to modify a shared variable at the same time. In this case, it is 
possible that the shared variable will take on an incorrect value. 
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A5 FLOATING-POINT ARITHMETIC EXAMPLE 

The example program below uses the BBP formula to calculate  to 15 decimal places, which is the 

best that can be represented in IEC 60559 64-bit precision (a real2). The program executes two 

report statements. The first simply outputs the '' variable (which is initialised from a constant which is 

correct to 16 decimal places), while the second outputs the result of the BBP calculation. 

void main() { 

   var64  = 3.1415926535897932; 
   real2 bbp[11]; 

 

   for(int i=0; i<11; i++) { 

      bbp[i] = term(i); 

      if(i > 0) 

         bbp[i] = bbp[i] .F+ bbp[i-1]; 

   } 

 

   report("%19.16f\n", ); 
   report("%19.16f\n", bbp[10]); 

}  // main() 

 

real2 term(int k) { 

   real2 t1 = 1.0; 

   for(int i=0; i<k; i++) 

      t1 = 16.0 .F* t1; 

   t1 = 1.0 .F/ t1; 

   return 

      t1 .F* ( 

         (4.0 .F/ ((8.0 .F* (real2)k) .F+ 1.0)) .F- 

         (2.0 .F/ ((8.0 .F* (real2)k) .F+ 4.0)) .F- 

         (1.0 .F/ ((8.0 .F* (real2)k) .F+ 5.0)) .F- 

         (1.0 .F/ ((8.0 .F* (real2)k) .F+ 6.0))); 

} 

Example 121 

The program output is: 

 3.1415926535897931 

 3.1415926535897931 
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