

© Copyright 2008-2021 Maia EDA Ltd.

This document contains proprietary information. The original recipient of this document may duplicate this

document in whole or in part for internal business purposes only, provided that this entire notice appears in all

copies. In duplicating any part of this document, the recipient agrees to make every reasonable effort to prevent

the unauthorised use and distribution of the proprietary information.

 Page 1/172

LRM 2.7 © 2008-2021 Maia EDA

Maia Reference Manual

 Page 2/172

LRM 2.7 © 2008-2021 Maia EDA

Contents

1 INTRODUCTION ... 8

1.1 PROGRAM STRUCTURE .. 8
1.2 SYNTAX DEFINITION ... 10

1.2.1 Regular expressions ... 10
1.2.2 Line termination and whitespace ... 11

1.3 THE PREPROCESSOR .. 11

2 LEXICAL CONVENTIONS ... 12

2.1 FILE STRUCTURE ... 12
2.2 CHARACTER SET ... 12

2.2.1 Line terminators and whitespace ... 12
2.3 COMMENTS ... 13
2.4 STATEMENT TERMINATION ... 13
2.5 IDENTIFIERS .. 13
2.6 STRINGS .. 14

2.6.1 Escape sequences ... 14
2.7 CONSTANTS .. 15

2.7.1 Cinteger ... 16
2.7.2 Vinteger .. 17
2.7.3 Floating constants .. 18
2.7.4 Boolean constants .. 20

2.8 KEYWORDS ... 20
2.9 PREDEFINED IDENTIFIERS ... 22

3 CONCEPTS .. 23

3.1 TYPE CHECKING .. 23
3.1.1 Implicit variables ... 24
3.1.2 Function formal types .. 24
3.1.3 Function return types ... 25
3.1.4 Port size checking .. 25
3.1.5 Boolean type... 26

3.2 DECLARATION ORDER ... 26
3.3 SCOPE ... 27
3.4 NAMESPACES .. 28
3.5 STORAGE DURATION ... 29
3.6 DEFAULT INITIALISATION ... 29
3.7 TYPES ... 29

3.7.1 Introduction ... 29
3.7.2 Assignment compatibility ... 31
3.7.3 ubit and uvar .. 32
3.7.4 ivar operations ... 32
3.7.5 int ... 34
3.7.6 bit ... 34
3.7.7 var .. 34
3.7.8 kmap ... 36
3.7.9 bool .. 38
3.7.10 struct .. 39
3.7.11 stream... 41
3.7.12 array... 50

4 OPERATORS AND EXPRESSIONS .. 53

4.1 INTRODUCTION ... 53
4.2 OPERATOR SYNTAX .. 54

 Page 3/172

LRM 2.7 © 2008-2021 Maia EDA

4.3 SIGNED OPERATORS .. 54
4.4 EXPRESSION EVALUATION .. 55

4.4.1 sub-expression evaluation .. 55
4.5 OPERATORS .. 56

4.5.1 Precedence and order of evaluation .. 56
4.5.2 Operator equivalents ... 57
4.5.3 Primary expressions ... 57
4.5.4 Postfix operators .. 58
4.5.5 Unary operators ... 62
4.5.6 Cast operators .. 63
4.5.7 Multiplicative operators ... 63
4.5.8 Additive operators .. 64
4.5.9 Shift and rotate operators .. 65
4.5.10 Relational operators .. 65
4.5.11 Equality operators ... 66
4.5.12 Bitwise AND operator .. 67
4.5.13 Bitwise exclusive OR operator ... 67
4.5.14 Bitwise inclusive OR operator ... 67
4.5.15 Logical AND operator ... 68
4.5.16 Logical OR operator .. 68
4.5.17 Conditional operator ... 68
4.5.18 Assignment operators ... 69
4.5.19 Comma operator .. 71

4.6 FLOATING-POINT OPERATORS AND EXPRESSIONS.. 71
4.6.1 Introduction ... 71
4.6.2 Declarations ... 73
4.6.3 Operators ... 73

5 DECLARATIONS ... 76

5.1 INTRODUCTION ... 76
5.2 ARRAY DIMENSIONALITY ... 76
5.3 INITIALISATION ... 77
5.4 INT, BIT, VAR, AND BOOL... 79
5.5 STRUCT ... 79
5.6 STREAM .. 80
5.7 KMAP .. 81
5.8 REFERENCES ... 82

5.8.1 Reference initialisation (1) ... 82
5.8.2 Reference initialisation (2) ... 83

6 STATEMENTS .. 84

6.1 INTRODUCTION ... 84
6.2 COMPOUND STATEMENT ... 85
6.3 EXPRESSION AND NULL STATEMENTS ... 85
6.4 SELECTION STATEMENTS .. 85

6.4.1 The if statement .. 86
6.4.2 The if-else statement .. 86
6.4.3 The switch statement .. 86

6.5 ITERATION STATEMENTS ... 87
6.5.1 The while statement .. 87
6.5.2 The do statement .. 87
6.5.3 The for statement .. 87
6.5.4 The for all statement .. 88

6.6 JUMP STATEMENTS ... 88
6.6.1 The continue statement... 89
6.6.2 The break statement ... 90

 Page 4/172

LRM 2.7 © 2008-2021 Maia EDA

6.6.3 The return statement .. 90
6.7 TRIGGER STATEMENT ... 91
6.8 DRIVE STATEMENT ... 92
6.9 WAIT STATEMENT ... 93
6.10 EXEC STATEMENT ... 93
6.11 EXIT STATEMENT .. 93
6.12 ASSERT STATEMENT ... 94
6.13 REPORT STATEMENT ... 94

6.13.1 Length modifiers .. 95
6.13.2 Conversion specifiers ... 95
6.13.3 fprintf compatibility ... 97

7 FUNCTIONS .. 98

7.1 INTRODUCTION ... 98
7.1.1 main ... 98

7.2 SYNTAX .. 98
7.3 PARAMETER PASSING SEMANTICS ... 99
7.4 FUNCTION SIGNATURES .. 100
7.5 USER FUNCTIONS .. 101
7.6 THREAD FUNCTIONS ... 101
7.7 TRIGGER FUNCTIONS .. 101
7.8 FOREIGN FUNCTIONS .. 102
7.9 INTER-FUNCTION COMMUNICATION .. 104

8 DUT SECTION .. 105

8.1 INTRODUCTION ... 105
8.2 MODULE DECLARATION .. 106

8.2.1 Parameterised modules .. 107
8.2.2 Module declaration error checking ... 108
8.2.3 Module input, output, and inout declarations .. 108
8.2.4 Syntax ... 108

8.3 DRIVE DECLARATION .. 109
8.3.1 Syntax ... 110
8.3.2 Clocked and combinatorial drive declarations .. 110
8.3.3 Sequential and triggered drive declarations .. 110
8.3.4 Clocked drives .. 112
8.3.5 Mixing clocked and combinatorial signals .. 112
8.3.6 Combinatorial drives ... 113
8.3.7 Sequential declaration signature ... 114

8.4 SIGNAL DECLARATION .. 114
8.4.1 Syntax ... 115

8.5 CLOCK DECLARATION ... 115
8.5.1 Syntax ... 115
8.5.2 Period declaration ... 116
8.5.3 Waveform declaration .. 116
8.5.4 Pipeline declaration ... 117
8.5.5 Examples .. 118

8.6 ENABLE DECLARATION ... 118
8.6.1 Syntax ... 118
8.6.2 Manual bidirectional control example ... 119
8.6.3 Automatic bidirectional control example ... 120

8.7 TIMESCALE DECLARATION .. 120
8.8 TIME PRECISION AND REPRESENTATION .. 121

8.8.1 Floating-point values in parameter lists .. 121
8.9 TIMING CONSTRAINT DECLARATION ... 122

8.9.1 Syntax ... 122

 Page 5/172

LRM 2.7 © 2008-2021 Maia EDA

8.9.2 Input constraint definition .. 123
8.9.3 Output constraint definition ... 124
8.9.4 Input setup and hold constraints .. 124
8.9.5 Output hold and delay constraints ... 125
8.9.6 Wildcard constraints .. 126
8.9.7 Constraint conflicts .. 127

9 DRIVE STATEMENT .. 130

9.1 INTRODUCTION ... 130
9.2 STATEMENT FORMAT .. 131

9.2.1 Drive statements with both input and output expressions .. 131
9.2.2 Input-only drive statements .. 131
9.2.3 Output-only drive statements ... 132
9.2.4 Pipelined drive statements ... 132

9.3 DRIVE DIRECTIVES .. 134
9.3.1 .C .. 134
9.3.2 .X and .Z ... 134
9.3.3 .R .. 134
9.3.4 Don't care conditions ... 135

9.4 LABELLED DRIVE STATEMENTS .. 135

10 SCHEDULING MODEL ... 136

10.1 INTRODUCTION ... 136
10.2 THREADS .. 136
10.3 PROGRAM TERMINATION .. 137
10.4 ADVANCING TIME ... 137
10.5 THREAD FUNCTIONS ... 137
10.6 HDL SIGNAL DRIVERS .. 138
10.7 OPERATING POINT ... 139

10.7.1 DUT output testing ... 139
10.8 DRIVE STATEMENT EXECUTION .. 139

10.8.1 Delta-delay simulations ... 141
10.9 SEQUENTIAL DRIVE STATEMENTS ... 142
10.10 TRIGGERED DRIVE STATEMENTS ... 143
10.11 MANUAL DUT TESTING AT THE OPERATING POINT ... 143

10.11.1 Input driving ... 144
10.11.2 Output testing ... 144
10.11.3 Summary of manual testing requirements .. 145

11 RUN-TIME ERROR CHECKING .. 146

11.1 RUN-TIME ERRORS .. 146
11.1.1 Array indexing errors... 146
11.1.2 Bitslice indexing errors .. 146
11.1.3 Checker Pipeline size errors .. 146
11.1.4 Checker Pipeline over-write errors ... 146
11.1.5 Trigger over-run .. 147
11.1.6 Last value pipeline errors .. 147
11.1.7 Filesystem I/O errors ... 147

11.2 RUN-TIME WARNINGS ... 147

12 PREPROCESSOR ... 148

12.1 INTRODUCTION ... 148
12.2 PREPROCESSOR TRANSLATION PHASES ... 148

12.2.1 Trigraph replacement .. 149
12.2.2 Digraph replacement ... 150
12.2.3 Line terminator conversion .. 150

 Page 6/172

LRM 2.7 © 2008-2021 Maia EDA

12.2.4 Whitespace conversion ... 150
12.2.5 UTF-8 validation ... 151
12.2.6 Line continuation ... 151
12.2.7 String preservation ... 151
12.2.8 Comments ... 152
12.2.9 Whitespace compression .. 152
12.2.10 Directive processing .. 152
12.2.11 Macro expansion .. 152

12.3 PREPROCESSOR DIRECTIVES.. 152
12.3.1 Conditional inclusion directives .. 153
12.3.2 include directives ... 155
12.3.3 Line directives .. 156
12.3.4 Warning and error directives ... 156
12.3.5 define directives ... 156
12.3.6 undef directive .. 158

12.4 MACRO EXPANSION .. 158
12.4.1 Self-referential macros ... 158
12.4.2 Object-like macro expansion ... 159
12.4.3 Function-like macro expansion .. 159

12.5 TOKENISATION ... 161
12.5.1 Preprocessor Identifiers ... 162
12.5.2 constant expression evaluation .. 162

12.6 PREDEFINED MACRO NAMES ... 162
12.7 PRAGMA DIRECTIVES .. 163

A1 BUILT-IN FUNCTIONS ... 164

A1.1 INT RAND(INT &SEED, INT LO, INT HI) ... 164
A1.2 INT RAND(INT &SEED) .. 164

A2 PROGRAM EXIT CODE ... 165

A3 GLOSSARY ... 166

A4 MTV .. 168

A4.1 PREPROCESSOR ... 168
A4.2 ENVIRONMENT VARIABLES ... 168
A4.3 COMPILER LOGGING ... 169
A4.4 SIZING ITERATIONS ... 169
A4.5 ASSERTION AND RUNTIME FAILURES .. 169
A4.6 DUT FAILURES ... 170
A4.7 VERILOG CODE GENERATOR LIMITATIONS .. 170

A4.7.1 Floating-point operations .. 170
A4.7.2 report statements .. 170
A4.7.3 Mode 2 stream conversion specifications .. 170
A4.7.4 Recursion ... 170
A4.7.5 Scheduling .. 171

A5 FLOATING-POINT ARITHMETIC EXAMPLE .. 172

 Page 7/172

LRM 2.7 © 2008-2021 Maia EDA

TABLE 1: SIMPLE ESCAPE SEQUENCES .. 15
TABLE 2: KEYWORDS 1 .. 20
TABLE 3: KEYWORDS 2 .. 21
TABLE 4: KEYWORDS 3 .. 21
TABLE 5: RESERVED WORDS ... 21
TABLE 6: ADDITIONAL LEXER TOKENS ... 21
TABLE 7: PREDEFINED VARIABLE NAMES ... 22
TABLE 8: LEVEL-SPECIFIC CHECKING .. 24
TABLE 9: 4-STATE LOGIC OPERATIONS .. 36
TABLE 10: KMAP OPERATORS ... 38
TABLE 11: BOOLEAN OPERATORS ... 39
TABLE 12: STRUCTURE OPERATORS .. 41
TABLE 13: MODE 1 STREAM OPERATORS ... 47
TABLE 14: MODE 2 STREAM OPERATORS ... 49
TABLE 15: ARRAY OPERATORS ... 52
TABLE 16: PRECEDENCE AND ASSOCIATIVITY OF OPERATORS... 56
TABLE 17: OPERATOR EQUIVALENTS .. 57
TABLE 18: SINGLE-PRECISION REAL OPERATORS .. 74
TABLE 19: DOUBLE-PRECISION REAL OPERATORS ... 74
TABLE 20: DOUBLE EXTENDED PRECISION REAL OPERATORS .. 75
TABLE 21: TRIGRAPHS .. 149
TABLE 22: DIGRAPHS .. 150
TABLE 23: LINE TERMINATORS ... 150
TABLE 24: WHITESPACE .. 151
TABLE 25: MPL OPERATORS .. 155
TABLE 26: PREDEFINED MACRO NAMES .. 162
TABLE 27: MTV ENVIRONMENT VARIABLES .. 169
TABLE 28: RTV ENVIRONMENT VARIABLES ... 169

FIGURE 1: 5-VARIABLE KARNAUGH MAP .. 36
FIGURE 2: ASSIGNMENT INPUT EXTENSION ... 70
FIGURE 3: INPUT CONSTRAINT DEFINITION ... 123
FIGURE 4: OUTPUT CONSTRAINT DEFINITION .. 124
FIGURE 5: MULTIPLE INPUT CONSTRAINT CONFLICT ... 128
FIGURE 6: MULTIPLE OUTPUT CONSTRAINT CONFLICT .. 129

 Page 8/172

LRM 2.7 © 2008-2021 Maia EDA

1 INTRODUCTION

The purpose of a Maia program is to apply stimulus to an HDL module, to read data back from that
module, and to determine whether or not that data has the expected value. The HDL module ('Device
Under Test', or DUT) is not part of the Maia program, and is written in a language such as VHDL or
Verilog. Maia generates a testbench for the DUT; the generated testbench must then be executed on
an HDL simulator.

Maia requires a DUT definition in order to communicate with the HDL code. This definition is the DUT
Section, which is described in chapter 8.

Maia communicates with the DUT by using drive statements, or 'test vectors', which are described in
chapter 9, or by direct access to DUT signals. Drive statements automate the process of applying timed
stimulus to the DUT, and checking the DUT outputs.

A drive statement evaluates a set of expressions which are used to drive the DUT inputs, and compares
the DUT outputs against another set of expressions. Drive statements may be executed within various
control flow constructs, to allow the creation of reactive testbenches. These facilities are provided by a
simple imperative control language, which is described in chapters 2 through 7. These facilities are
similar, and in many cases identical, to those provided by C and related languages.

1.1 Program structure

A program may be written in one of two forms. In the first, a single DUT definition is required, and the
remainder of the program is made up of a list of drive statements, which are executed sequentially. No
other statements are allowed. This form (testvector-program) is suitable only for simple tests.

In the second form (procedural-program), a program is composed of at least one function (the

program entry point, which must be named main). There may optionally be a single DUT definition,

and additional functions and declarations. In this form, the drive statements are executed as part of the
normal program flow, inside a function.

The two examples below are complete examples of a testbench for a two-bit counter with a
synchronous reset, coded in these two styles. The first is a test vector program, and tests the DUT by
applying directives and constants to the DUT inputs, and comparing the DUT outputs against the
expected values:

DUT {

 module counter(input CLK, RST, output [1:0] Q)

 create_clock CLK

 [CLK, RST] -> [Q]

}

[.C, 1] -> [0] // sync reset

[.C, 0] -> [1]

[.C, 0] -> [2]

[.C, 0] -> [3]

[.C, 0] -> [0] // roll-over

Example 1

 Page 9/172

LRM 2.7 © 2008-2021 Maia EDA

The second example is the procedural equivalent of the test vector program. In this form, the DUT may
be driven with and tested against arbitrary expressions, and drive statements can be enclosed in
control and looping constructs:

DUT {

 module counter(input CLK, RST, output [1:0] Q)

 create_clock CLK

 [CLK, RST] -> [Q]

}

void main() {

 [.C, 1] -> [0]; // sync reset

 bit2 q = 1; // q is a 2-bit integer, initialised to 1

 do

 [.C, 0] -> [q]; // count, with roll-over

 while(q++);

}

Example 2

Both programs execute 5 drive statements, and produce a log file entry stating that all 5 vectors have
passed (assuming, of course, that the counter module has been correctly implemented):

(Log) (50 ns) 5 vectors executed (5 passes, 0 fails)

Syntax

maia-program :

 testvector-program

 procedural-program

testvector-program : tp-section-list

tp-section-list :

 tp-section

 tp-section-list tp-section

tp-section :

 DUT-definition

 labelopt vfile-drive-statement semicolonopt

semicolon : ;

procedural-program : external-declaration-list

external-declaration-list:

 external-declaration

 external-declaration-list external-declaration

external-declaration :

 DUT-definition

 function-definition

 declaration

 foreign-function-decl

 Page 10/172

LRM 2.7 © 2008-2021 Maia EDA

1.2 Syntax definition

The language grammar is presented in a simplified form throughout the text. The grammar is not
exhaustive, and is not sufficient to construct a parser. Its purpose is merely to illustrate correct syntax,
where the grammar is more concise or more complete than a textual description.

Terminals which are presented in a typewriter style should be entered literally. Note that terminals

are not necessarily keywords (2.8); the ones that are not keywords may also appear as user-defined
names, if they have the appropriate form for a name.

A number of the base operators (those shaded in Table 16) may optionally be signed and sized (4.2),
or may have an alternative textual name (4.5.2). These alternatives are not listed in the grammar. In
this production, for example:

shift-expression :

 ...

 shift-expression >> additive-expression

The >> operator is equivalent to the following set of right-shift operators:

a >> b; // 1: unsigned (logical) implicitly-sized Right Shift

a >># b; // 2: signed(arithmetic) implicitly-sized RS

a >>$n b; // 3: unsigned n-bit RS

a >>#$n b; // 4: signed n-bit RS

a .SRL b; // 5: same as 1

a .SRA b; // 6: same as 2

a .SRL$n b; // 7: same as 3

a .SRA$n b; // 8: same as 4

Example 3

The $n form is used to represent any valid operator size. n must be greater than 0, and less than or

equal to a compiler-determined maximum, which is at least 224.

bitn and varn represent a bit or var type mark which is optionally sized. If n is present, it must be

greater than 0, and less than or equal to a compiler-determined maximum, which is at least 224.

1.2.1 Regular expressions

A number of productions are instead presented as regular expressions, for simplicity. In this case, the
production name is followed by ::, rather than :. The definition of a string, for example, is given as:

string :: "[^"\n]*"

A string is therefore composed of a double quote character, followed by zero or more characters which

are not a double quote or a newline, followed by a second double-quote character.

A regular expression may also refer to a production, which is enclosed in braces { and }:

macro-name-lparen :: {pp-identifier}(

in this case, a macro-name-lparen is a pp_identifier which is immediately followed by a (character,
with no intervening whitespace. The concept of "no intervening whitespace" cannot be represented in
the regular (BNF-based) productions; the tokens in these productions may be separated by arbitrary
line terminators and whitespace.

 Page 11/172

LRM 2.7 © 2008-2021 Maia EDA

1.2.2 Line termination and whitespace

The language allows a number of UTF-8 code points to represent line terminators and whitespace.

However, the preprocessor converts all line terminators to \n (LF, U+000A)1, and all whitespace (with

the exception of HT) to a space character (SP, U+0020)2. On completion of pre-processing, all line
terminator and whitespace code points will appear as either LF (U+000A), SP (U+0020), or HT
(U+0009). Any reference to \n, "newline", or "whitespace", outside the context of the preprocessor (in

other words, any reference outside chapter 12), refers to the preprocessor output.

1.3 The preprocessor

The translation of a source file is carried out in two distinct stages. In the first, a preprocessor carries
out a number of simple textual conversions on the source file. The preprocessor output is then used as
input to the second stage of translation. This second stage is conventionally known as "compilation".

The preprocessor defines a Macro Processing Language, or MPL. The MPL provides a number of
facilities, including the creation of macros with the #define directive (which allows an identifier to be

replaced by an arbitrary sequence of characters), and the inclusion of a source file inside another
source file, with the #include directive.

The operation of the preprocessor is logically distinct from the operation of the compiler, and is
described in chapter 12. The preprocessor grammar is presented in the same form as the compiler
grammar (1.2), but the two grammars are distinct. The grammars have a common definition of
identifiers and constants, but do not otherwise reference each other. The use of the preprocessor is
optional (12.1). However, the preprocessor provides a number of facilities beyond the MPL itself
(including the checking of UTF-8 input), and the compiler is unlikely to be able to translate programs
which have not been through the pre-processing stage.

1 LF (Linefeed) is also variously known as "newline" and "NL". \n is an escape sequence which represents LF; see 2.6.1.

2 See 12.2.3 and 12.2.4.

 Page 12/172

LRM 2.7 © 2008-2021 Maia EDA

2 LEXICAL CONVENTIONS

2.1 File structure

A program must be compiled as a single unit. The name of the top-level source file is, by convention,
given a .tv extension. Source files may use #include directives (12.3.2) to allow arbitrary file

inclusion.

2.2 Character set

The source character set is UTF-81. Source files may optionally be preceded by a 3-byte byte order
mark (BOM2); the BOM is ignored if it is present.

All invalid byte sequences are rejected as errors, with the exception that the two-byte sequence 0xC0,
0x80 is treated as a null character (U+0000)3. In particular, CESU-8 encodings are not supported.

2.2.1 Line terminators and whitespace

The Unicode code points listed in 12.2.3 are recognised as line terminators; all line terminators are
converted to a single LF character (U+000A) during pre-processing. The code points listed in 12.2.4 are
recognised as whitespace. These code points, with the exception of HT (U+0009), are converted to a
single SP character (U+0020) during pre-processing. On completion of pre-processing, all line
terminator and whitespace characters in the source will appear as either LF, SP, or HT.

Maia is a "free-form" language, in the sense that line terminators and whitespace in the source are not
generally significant, and are normally present simply for readability. A number of exceptions are listed
below (the ‘for all’ keyword, for example, cannot be spelt as ‘forall’). Another exception occurs

when two adjacent textual tokens must be parsed as separate identifiers or keywords. In this case,
they must be separated by line terminators or whitespace:

// function 'foo':

real2 foo(real2 x) { return x +  / 2; }

real2 foo1 (real2

x) {return x+/2;} // function 'foo1' is identical to 'foo'

real2foo2(real2 x){return x+/2;} // error: 'real2foo2' is a single identifier

real2 foo3(real2 x){returnx+/2;} // error: tokenised as (returnx)(+)()(/)(2)

Example 4

1 UTF-8 is a Unicode multibyte character encoding. Characters which are not part of the ASCII subset (U+0000 through
U+007F) are represented by a multi-byte sequence, with a maximum length of 4 bytes. UTF-8 is backwards-compatible with
ASCII, and any source file which is valid ASCII is also valid UTF-8.

2 Some Windows programs may add the three-byte sequence 0xEF, 0xBB, 0xBF to the start of any file saved as UTF-8. This
is the UTF-8 encoding of the Unicode byte order mark, although byte order is not relevant to UTF-8.

3 This exception is generally known as ‘modified UTF-8’.

 Page 13/172

LRM 2.7 © 2008-2021 Maia EDA

2.3 Comments

The // characters introduce a line comment. The compiler ignores everything after these characters,

up to the end of the current line.

Comments may also be introduced by the /* characters, and terminated by the */ characters. This

second form has the advantage that the comment may be spread over multiple lines, and is known as a
block comment. These comments do not nest, and cannot be inserted within strings.

Some examples of comments are:

bit128 foo; // this is a line comment

/* this is a

 * multi-line block comment */

2.4 Statement termination

Statements within functions are terminated by a semicolon.

Within a function, braces { and } are used to group declarations and statements into a compound

statement, which is syntactically equivalent to a single statement. There is no terminating semicolon
after the closing brace of a compound statement.

Statements within a DUT section may optionally be terminated by a semicolon, if desired. External drive
statements in a testvector-program may similarly be terminated with a semicolon, if desired; the
termination is not required in either case.

2.5 Identifiers

An identifier may be a simple identifier or an extended identifier.

A simple identifier may contain a set of alphabetic characters. The alphabetic characters are defined as
a through z, A through Z, and all multibyte UTF-8 characters, with the exception of the multibyte line

terminators (12.2.3), and the multibyte whitespace characters (12.2.4). The alphabetic characters are
defined below as ident-alpha.

Legal simple identifiers consist of a combination of the alphabetic characters, the decimal digits 0 to 9,

and underscore (_, U+005F). User-defined simple identifiers must start with an alphabetic character,

and should not be the same as a keyword (2.8).

An extended identifier must be enclosed in \ (U+005C, Reverse Solidus) characters. The identifier may
contain any UTF-8 characters which are not line terminators, but must not start with an underscore.

All identifiers which start with an underscore are reserved. Some of these reserved names may be
legally used, and have predefined meanings, which are listed in 2.9 below. Identifiers may contain any
number of characters up to a compiler-determined maximum, which is at least 212.

This example shows the usage of extended identifiers:

 Page 14/172

LRM 2.7 © 2008-2021 Maia EDA

void main() {

 int \switch\ = 1; // keywords Ok

 int \sw 2\ = 2; // spaces Ok

// int _foo\ = 3; // illegal: leading '_'

 // prints "\switch\ is 1; \sw 2\ is 2":

 report("\\switch\\ is %d; \\sw 2\\ is %d\n", \switch\, \sw 2\);

}

Example 5

Syntax

simple_identifier :: [{ident-alpha}_][{ident_alpha}_0-9]*

extended_identifier :: \\[^\n]+\\

ident-alpha ::

 [U+0061-U+007A] | [U+0041-U+005A] |

 [U+0080-U+0084] | [U+0086-U+2027] | [U+202A-U+10FFFF]

identifier :

 simple_identifier

 extended_identifier

2.6 Strings

Strings are arbitrary character sequences which are enclosed in double quotation marks ("). Strings

cannot be continued onto a new line; it is an error if a single line of input contains an unterminated
string. Within a function, adjacent strings are automatically concatenated, even across line boundaries.
However, adjacent strings are never concatenated within a DUT section.

A string does not have a value, and may not be manipulated in an expression.

2.6.1 Escape sequences

A number of characters may be represented in a string using an escape sequence, consisting of a
backslash (\, U+005C) followed by one or more characters. Escape sequences are replaced by the

single character that they represent during parsing. An escape sequence may be a simple-escape-
sequence, an octal-escape-sequence, or a hexadecimal-escape-sequence:

escape_sequence :

 simple-escape-sequence

 octal-escape-sequence

 hexadecimal-escape-sequence

octal-escape-sequence :

 \ octal-digit

 \ octal-digit octal-digit

 \ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence :

 \x hexadecimal-digit

 hexadecimal-escape-sequence hexadecimal-digit

octal-digit :: [0-9]

hexadecimal-digit :: [0-9,a-f,A-F]

 Page 15/172

LRM 2.7 © 2008-2021 Maia EDA

The simple escape sequences are listed in Table 1 below. An octal escape sequence is composed of a
maximal-length sequence of octal digits (1, 2, or 3 digits), while a hexadecimal escape sequence is
composed of a maximal-length sequence of hexadecimal digits (1 or 2 digits).

Newline LF (NL) \n audible alert BEL \a

Horizontal tab HT \t backslash \ \\

vertical tab VT \v question mark ? \?

Backspace BS \b single quote ' \'

carriage return CR \r double quote " \"

Formfeed FF \f

Table 1: Simple escape sequences

Syntax

string ::

 "[^"\n]*"

2.7 Constants

Constants may represent integer, floating-point, or boolean values.

Integer constants can be specified as either a Cinteger, or a Vinteger. the Cinteger is based on C
integer constants, while the Vinteger is based on Verilog integer constants. Cintegers are unsized 2-
value integers (in other words, each bit can take on one of only 2 values; 0 or 1). The Vinteger is an

optionally-sized 4-value integer (each bit can take on one of the 4 values 0, 1, X, or Z).

Floating-point constants have the same form as C99 floating constants1.

When used in an expression, a constant may be considered to be replaced by a temporary object, of a
bit, var, or bool type, with the value of the constant. If an integer constant contains no metavalues,

then this object is a bit; it is otherwise a var. For floating constants, this object is a bit (floating

constants may not contain metavalues); for boolean constants, it is a bool.

A leading minus sign, if it is present, is not part of the constant; it is instead interpreted as a unary
negation operator.

Syntax

constant :

 cinteger-constant

 vinteger-constant

 floating-constant

 boolean-constant

1 ISO/IEC 9899:1999 (E), §6.4.4.2

 Page 16/172

LRM 2.7 © 2008-2021 Maia EDA

2.7.1 Cinteger

Cintegers are specified in a C-like form, with the addition that 0b and 0B prefixes may be used to

specify binary data. A leading 0x or 0X specifies hexadecimal, while a leading zero otherwise specifies

octal. Underscores may also be inserted arbitrarily into the constant to improve readability, although
not as the first character, and not inside the base specifier.

Syntax

cinteger-binary :: 0[bB][01_]+

cinteger-octal :: 0[0-7_]*

cinteger-decimal :: [1-9][0-9_]*

cinteger-hexadecimal :: 0[xX][a-fA-F0-9_]+

cinteger-constant :

 cinteger-binary

 cingteger-octal

 cinteger-decimal

 cinteger-hexadecimal

In other words, a Cinteger may be one of:

1. A binary integer, which is prefixed by either 0b or 0B, and which is followed by one or more

characters in the range 0 to 1;

2. An octal integer, which starts with 0, optionally followed by one or more characters in the

range 0 to 7;

3. A decimal integer, which starts with a character in the range 1 to 9, optionally followed by

one or more characters in the range 0 to 9;

4. A hexadecimal integer, which is prefixed by either 0x or 0X, followed by one or more case-

insensitive characters in the range 0 to 9, or A to F.

These constants may not include metadata (unknown and high-impedance bits), and are scanned to
the number of bits set by the _DefaultWordSize pragma (which defaults to 32). An overflow is

reported if the constant cannot be represented in this many bits.

Some examples of Cinteger constants are:

bit64 i; // a 64-bit two-state variable

i = 0; // octal 0

i = 0b1010; // binary, equivalent to decimal 10

i = 012; // octal, equivalent to decimal 10

i = 10; // decimal 10

i = 0x000a; // hex, equivalent to decimal 10

i = 0x_ffff_ffff_ffff_ffff_; // arbitrary underscores (_DefaultWordSize >= 64)

i = _0xffff_ffff; // error: leading '_'

i = 019; // error: decimal integers may not start with 0

Example 6

 Page 17/172

LRM 2.7 © 2008-2021 Maia EDA

2.7.2 Vinteger

Vintegers are specified in a Verilog-like form. This allows metadata to be entered, and also allows

constants of arbitrary width to be specified.

Syntax

size-prefix :: [0-9]*['`]

vh-digit :: [xXzZ?0-9a-fA-F]

vb-base :: [bB]

vo-base :: [oO]

vd-base :: [dD]

vh-base :: [hH]

vinteger-constant ::

 {size-prefix}({vb-base}|{vo-base}|{vd-base}|{vh-base}){vh-digit}({vh-digit}|_)*

In other words, a Vinteger constant is composed of:

• a mandatory size prefix, which is either (a) an unaccompanied prefix character for an unsized
Vinteger, or (b) one or more decimal integers followed by a prefix character, for a sized
Vinteger; followed by

• a mandatory base specifier, which must be one of binary (b or B), octal (o or O), decimal (d or

D), or hex (h or H); followed by

• a single vh_digit; optionally followed by

• zero or more characters which are either a vh_digit, or an underscore character, which may be

used arbitrarily to improve readability.

The prefix character may be either an apostrophe ' (U+0027), or a grave accent ` (U+0060)1.

vh_digit is shown as including the full case-insensitive hex character set, for simplicity. The

characters used must, however, be valid for the specified base. The vh_digit may also be specified

(in any base) as x or X for an unknown value, or z, Z, or ? for a high-impedance value; these

characters are the 'metavalues'2.

A metavalue character specifies 1 bit for the binary base, 3 bits for octal, and 4 bits for hex. The

integer 4'hx, for example, is equivalent to 4'bxxxx. Metavalues are illegal in decimal numbers, unless

the entire integer is composed of a single metavalue. In this case, every bit of the integer is set to the
metavalue. The integer 32'dx, for example, contains 32 unknown bits.

Vintegers must not contain any whitespace; the entire constant is one token.

These integers are essentially identical to Verilog "based constants". There are, however, a number of

differences between Vintegers and Verilog based constants:

1 The apostrophe character is used for Verilog compatibility. However, this character may cause difficulties with tools for C-like
languages (such as editors), and the grave accent (or ‘back-tick’) may be used as an alternative.

2 When scanning a Vinteger '?' is accepted as an alternative to z or Z for Verilog compatibility. However, the use of ? should

be avoided if possible; it is not valid elsewhere (when initialising a kmap, for example) as a metavalue.

 Page 18/172

LRM 2.7 © 2008-2021 Maia EDA

• there must be no whitespace anywhere in the constant. "5 'd 4" is interpeted in Verilog as

0b00100, but is illegal in Maia; it should instead be specified as "5'd4"

• the 's' designator is illegal (as in Verilog-1995)

• if a size prefix is present and the constant cannot be represented in the specified size, an
overflow error is reported (overflow is not an error in Verilog)

• if a size prefix is not present, the constant is scanned to the number of bits given by
_DefaultWordSize, and an overflow error is reported if it cannot be represented in this

many bits

• if there is not enough data in the constant to fill the specified number of bits, then the data is
always padded with 0 bits to the left; x and z padding is never used. The one exception is

the case of the single-metavalue decimal Vinteger, as noted above.

Some examples of Vinteger constants are:

#pragma _DefaultWordSize 24 // scan unsized integer constants to 24 bits

var5 i; // a 5-bit four-state variable

i = 'b1010; // 24-bit decimal 10, truncated to 5 bits on assignment

i = 4'B00_1010; // 4-bit decimal 10, no overflow

i = 4'B01_1010; // cannot scan to 4 bits; overflow error

i = 'o12; // 24-bit decimal 10, truncated on assignment

i = 'd10; // 24-bit decimal 10, truncated on assignment

i = 4'D10; // 4-bit decimal 10, 0-extended on assignment

i =# 4'D10; // 4-bit decimal 10, sign-extended to 5'b11010 on assignment

i = 'dz; // 24 z bits, truncated to 5 bits on assignment

i = 'h1x; // i == 5'b1xxxx

i = 4'h1x; // overflow error

Example 7

2.7.3 Floating constants

Maia floating constants are lexically identical to C99 floating constants. A float constant is composed of
a significand part, followed by an optional exponent part, and an optional suffix. The suffix specifies the
precision of the constant; it may be either f or F for single-precision, or l or L for extended double-

precision. The constant is double-precision if the suffix is omitted.

The Verilog code generator supports only double-precision constants (A4.7.1). However, any
expressions which can be statically evaluated by the compiler may use any, or all, of the floating-point
precisions.

The constant is hexadecimal if it is preceded by 0x or 0X; it is otherwise decimal. For a hexadecimal

constant, the significand is interpreted as a hexadecimal number; for a decimal constant, the
significand is interpreted as a decimal number.

For a hexadecimal constant, the exponent is interpreted as a decimal number, which specifies the
power of two by which the significand is scaled. For a decimal constant, the exponent is interpreted as
a decimal number, which specifies the power of ten by which the significand is scaled.

The components of the significand part may include a digit sequence representing the whole-number
part, followed by a period (.), followed by a digit sequence representing the fraction part. At least one

of the whole-number part and the fraction part must be present.

 Page 19/172

LRM 2.7 © 2008-2021 Maia EDA

The components of the exponent part are an e or E (for a decimal constant), or p or P (for a

hexadecimal constant), followed by an exponent consisting of an optionally signed decimal digit
sequence.

For decimal floating constants, either the period or the exponent part has to be present. The exponent

is always required for hexadecimal floating constants.

Syntax

floating-constant :

 dec-floating-constant

 hex-floating-constant

dec-floating-constant :

 dec-fractional-constant exponent10-partopt floating-suffixopt

 dec-digit-sequence exponent10-part floating-suffixopt

hex-floating-constant :

 hex-prefix hex-fractional-constant exponent2-part floating-suffixopt

 hex-prefix hex-digit-sequence exponent2-part floating-suffixopt

dec-fractional-constant :

 dec-digit-sequenceopt . dec-digit-sequence

 dec-digit-sequence .

hex-fractional-constant :

 hex-digit-sequenceopt . hex-digit-sequence

 hex-digit-sequence .

exponent10-part :

 e signopt dec-digit-sequence

 E signopt dec-digit-sequence

exponent2-part :

 p signopt dec-digit-sequence

 P signopt dec-digit-sequence

dec-digit-sequence :

 dec-digit

 dec-digit-sequence digit

hex-digit-sequence :

 hex-digit

 hex-digit-sequence hex-digit

sign :: + | -

hex-prefix :: 0x | 0X

floating-suffix :: f | F | l | L

Examples

Some examples of floating-point constants are given below; the comments include the report statement
output. These are all double-precision constants. Single- and double-extended constants are specified
identically, but with a trailing case-insensitive F or L, respectively.

 Page 20/172

LRM 2.7 © 2008-2021 Maia EDA

report("'%5.2f'\n", 3.14159); // ' 3.14'

report("'%5.2f'\n", 3.14159E0); // ' 3.14'

report("'%5.2f'\n", 31.4159e-1); // ' 3.14'

report("'%5.2f'\n", .314159e+1); // ' 3.14'

report("'%5.2f'\n", 1.); // ' 1.00'

report("'%5.2f'\n", 1e0); // ' 1.00'

report("'%5.2f'\n", .1E1); // ' 1.00'

report("'%5.2f'\n", .5); // ' 0.50'

report("'%5.2f'\n", 0x0.8p0); // ' 0.50' (0000.1000)

report("%5.2f'\n", 0x0.8p1); // ' 1.00' (ie. 0000.1000 x 2^1)

report("%5.2f'\n", 0x0.4p2); // ' 1.00' (ie. 0000.0100 x 2^2)

report("%5.2f'\n", 0x0.3p+4); // ' 3.00' (ie. 0000.0011 x 2^4)

Example 8

2.7.4 Boolean constants

The literals true and false may be used wherever a value of a Boolean type is expected.

Note that care must be taken when displaying a boolean value with report. The %d and %i

conversion specifications treat their argument as a signed integer quantity, and the displayed output
may not be as expected1. Booleans should be printed with an unsigned conversion (%b, %o, %u, %x, or

%X), or with the boolean specification (%l). %l produces the output false if the corresponding

expression is false, and true otherwise.

Syntax

boolean-constant :: true | false

2.8 Keywords

The language keywords are listed in the tables below. These keywords may not be used as simple
identifiers. The tables are separated for convenience; all the keywords are reserved in all parts of a
program. Note that var[0-9]*, kmap[0-9]*, and bit[0-9]* are regular expressions, and not

literal tokens. In other words, var itself is a keyword, and any token which is composed of var

immediately followed by one or more decimal integers is also a keyword. The tokens of multi-word
keywords (when all and for all) must be separated by whitespace.

Table 2 lists the DUT-related keywords. Note that name, period, pipeline, and waveform are

listed, but have no significance unless they are immediately preceded by a hyphen character.

create_clock create_enable DUT inout input

macromodule module -name negedge output

-period -pipeline posedge signal timescale

-waveform

Table 2: Keywords 1

The type-related keywords are listed in Table 3 below.

1 Most Verilog simulators will display a signed 1'b1 as '-1', although at least one displays it as '0'.

 Page 21/172

LRM 2.7 © 2008-2021 Maia EDA

bit[0-9]* bool int kmap[0-9]* real1

real2 real3 stream struct ubit

uvar var[0-9]*

Table 3: Keywords 2

Table 4 lists the remaining keywords. true and false are listed as keywords for simplicity, although

they are technically boolean literals.

and assert break case continue

default do else exec exit

false for for all foreign if

or report return static switch

trigger true void wait when

when all while

Table 4: Keywords 3

Table 5 list tokens which are reserved for future use as keywords; they may not be used as identifiers.

new delete enum function typedef

ref in out goto fork

join extern alias

Table 5: Reserved words

Table 6 lists multi-character tokens which must not include whitespace. There are also a number of
multi-character operator tokens (*=, for example) which may not include whitespace; these are listed

in Table 16. The meta, msb, size and offset operators must be immediately preceded by either an

apostrophe character, or a grave accent (backtick) character, with no intervening whitespace; the table
lists only the apostrophe version, for simplicity.

@(:: -> 'meta 'msb

'size 'offset 'last

Table 6: Additional lexer tokens

 Page 22/172

LRM 2.7 © 2008-2021 Maia EDA

2.9 Predefined identifiers

A number of identifiers are predefined, and are listed in Table 7 below.

Name R/W Scope Function

_errorCount RW global The global error counter; automatically incremented by assertion
failures. The simulation will terminate when _errorCount

reaches the value set by mtv's -rte switch (A4.5).

_errorCount may also be incremented by failures in runtime type

checking (11). Note that _errorCount is unrelated to DUT

failures (see _failCount).

_assertCount RO global Total number of assertions executed; may be used with
_errorCount for testing

_version RO global The Maia version, as three integers packed into 32 bits. The top 16
bits encode the current version. The next 12 bits encode the
release year, and the bottom 4 bits encode the release month.

_timeNow RO global The current simulation time, as a bit64. The units are the timescale
units defined in the DUT section, which default to nanoseconds.

_vectorCount R/W global The total number of DUT vectors (drive statements) executed

_passCount R/W global The DUT pass counter

_failCount R/W global The DUT fail counter. _vectorCount, _passCount, and

_failCount are automatically logged and displayed at the end of

a simulation. Note that these variables are writeable, to allow for
manual testing.

result R/W function The return value from a function: see Section 7.

Table 7: Predefined variable names

 Page 23/172

LRM 2.7 © 2008-2021 Maia EDA

3 CONCEPTS

3.1 Type checking

The syntactic and semantic correctness of a program is determined through a combination of static and
dynamic error (or type) checking. Static checking is carried out during compilation; a failure at this
stage is reported as a syntax error. However, various classes of error cannot be detected during
compilation, and must be detected at runtime. Example 9 contains two static errors and one dynamic
error (in practice, however, errors which could be determined statically may instead be reported at
runtime):

void test(void) {

 var12 x[3]; // an array of three 12-bit quantities

 x[3] = 0; // static error: only x[0], x[1], and x[2] are valid

 x[2].(15:12) = 0; // static error: x[2] only has 12 bits

 x[indx()] = 0; // dynamic error: '3' is not a valid index

}

int indx(void) { return 3; }

Example 9

Dynamic error checking is described in (11) below.

The level of static checking which is carried out is determined by the user, by setting the

_StrictChecking pragma. This has three possible values (0, 1, and 2), where the level corresponds

to the level of 'strictness' of the checking. Level 0 defines a minimal level of 'weak' checking, which is
generally associated with scripting languages. The default level is 1, which gives a level of checking
which is approximately equivalent to that found in C and similar languages. A program which compiles
without error at a given checking level is guaranteed to compile without error at any lower level.

It is generally possible to write more compact (and possibly more understandable) code with level 0.
However, this disables a number of checks which might otherwise identify erroneous code, and should
generally be considered to be suitable only for simple, and relatively short, tests.

The type checking level can be set only with the _StrictChecking and _Implicits pragmas

(12.7). These pragmas are program-wide, and should appear once in the source code, before any
functions are analysed. There are no corresponding compiler switches to set the level. The intention is
to ensure that a given program will always compile with the same level of checking, irrespective of the
manner in which it is compiled.

The level-specific checks and features are listed in Table 8 below, together with the corresponding
_StrictChecking level:

 Page 24/172

LRM 2.7 © 2008-2021 Maia EDA

Level: 0 1 2

Implicit variables (3.1.1) Y N N

Default type for function formal (3.1.2) Y N N

Default type for function return (3.1.3) Y N N

Port size checking (3.1.4) N Y Y

Extended boolean checking (3.1.5) N N Y

Separate boolean type (3.1.5) N N Y

Table 8: level-specific checking

3.1.1 Implicit variables

Level 0 allows the use of implicitly-declared variables. These variables do not need to be declared, and
are instead created automatically when an undeclared variable is first assigned to in the code. An error
will be reported if an undeclared variable is read before it is written to. These variables are created with
type var; in other words, they are 4-state data objects, with a default size1. The object must be scalar;

implicit arrays will not be created.

#pragma _StrictChecking 0

main() {

 for(i=0; i<4; i++)

 report("i is %d\n"); // Ok

 report(j is %d\n", j); // error; 'j' has not been written to

}

Example 10

Implicit variables can be enabled or disabled independently of the checking level by using the

_Implicits pragma. If this pragma is used, the requested action takes precedence over the action

implied from the _StrictChecking level. #pragma _Implicits 0 disables the use of implicits,

while #pragma _Implicits 1 enables implicits.

Implicit variables which are created in a function have function scope, rather than block scope. The
scope of the variable starts at the point at which it is first assigned to, and ends at the end of the
associated function.

3.1.2 Function formal types

If a function formal parameter has no type specifier in level 0, a type of uvar (an unconstrained var)

will be assumed. A syntax error is reported at any higher level.

1 If implicits are enabled, creation of a var object creates an object with a size given by _DefaultWordSize. When implicits

are not enabled, however, var is simply a synonym for var1, and an object declared as a var is a 1-bit object.

 Page 25/172

LRM 2.7 © 2008-2021 Maia EDA

3.1.3 Function return types

If a function is declared with no type specifier in level 0, a return type of uvar (an unconstrained var)

will be assumed. A syntax error is reported at any higher level.

3.1.4 Port size checking

When reading from, or writing to, an object of an arithmetic type, the source expression will normally
be extended or truncated as required, irrespective of the checking level. However, this is a potential
source of errors when driving or reading DUT ports, and extension and truncation are therefore
disabled for expressions which appear in drive statements, when the checking level is greater than 0.
Note that:

1. When the checking level is 0, objects may be extended or truncated as required, with no
restrictions;

2. When the checking level is greater than 0, extension and truncation are disabled and will result
in a syntax error, with the exceptions noted in 3.1.4.1 below;

3. The exceptions of 3.1.4.1 apply only when using a drive statement. If the DUT ports are driven
or read directly then they do not apply.

3.1.4.1 Port size checking exceptions

• If an unsized constant is used in a drive statement (on either the left-hand or the right-hand side)
then that constant is not subject to port size checking, irrespective of the checking level.

• A bitslice of an object has the same size as that object, and this can complicate the use of
bitslices to drive DUT ports. A port may therefore be driven directly if the slice has constant
indexes, and the slice width is the same as the port width.

Various examples of valid and invalid drive statements are shown in Example 11 below.

DUT {

 module adder(input[15:0] A, B, output[15:0] C);

 [A,B] -> [C];

}

void main() {

 bit32 in1 = 10;

 bit16 in2 = 6;

 int x=30, y=0;

 [32`d10, in2] -> []; // error: sized const, not 16 bits

 [in1, in2] -> []; // error: in1 is 32-bit

 [in1.(14:0), in2] -> []; // error: 15 bit slice

 [in1.(15:0).(3:0), in2] -> []; // error: 4 bit slice

 [in1.(15:0).(x:y), in2] -> []; // error: not constant

 A = in1.(18:3); // error: 16 bit <- 32 bit

 [in1.(18:3), in2] -> [7]; // but this is Ok

 [in1.(x:y).(17:2), in2] -> [8]; // Ok: 16 bits

 ['d10, in2] -> [16]; // Ok: unsized const

}

Example 11

 Page 26/172

LRM 2.7 © 2008-2021 Maia EDA

3.1.5 Boolean type

In levels 0 and 1, there is no separate boolean type, and bool is simply a synonym for bit1 (a one-bit

two-state integer). The boolean values true and false have the values 1'b1 and 1'b0, respectively.

Level 2 introduces a separate boolean type. In level 2, an arithmetic object may still be used wherever
a boolean is required by the syntax, and the object will be implicitly converted to a boolean. However,
booleans undergo some additional type checking; two boolean objects may not be added by using the
+ operator, for example.

int foo() { return 1; }

while(true) // Ok for all levels; true and false are not level-specific

 ...

if(foo()) // Ok for all levels

 ...

if(foo() != 0) // Ok for all levels

 ...

bool x = false, y = true;

int z = x + y; // Ok in levels 0,1; error in level 2

Example 12

3.2 Declaration order

In general, external declarations and function definitions may appear in the source code in any order.
Local declarations, however, are treated conventionally, and must appear in the code before they are
used. This flexibility is possible because a compiler pre-pass analyses external declarations, the DUT
section, and all functions.

The specific rules are listed below; some of these are simply a reformulation of the scope requirements
of (3.3).

1. There is no requirement for (non-foreign) functions to be declared; a function's definition also
serves as its declaration

2. There is no requirement that a function definition should precede any use of that function in
the source code. The functions which make up a program may therefore appear in the source
code in any order

3. The DUT definition is treated in the same way as a function, and may appear anywhere that a
function may appear

4. There is no requirement that external variable declarations should precede any use of that
variable in the source code

5. There is no requirement that external type declarations should precede any use of that type in
the source code, with the exception noted in (6) below

 Page 27/172

LRM 2.7 © 2008-2021 Maia EDA

6. If an external structure declaration contains a member which is of a user-defined type (a

stream or another structure), then that type must have already been analysed

7. Automatic and static variables in a function must be declared before they are used. If,
however, implicit variables (3.1.1) are enabled, and the compiler encounters a write operation
to an unknown variable, then it will implicitly declare it to be of type var

8. local type declarations (for structures and streams) in a function must precede any use of that
type in the function

9. In a function, declarations may appear at any location; it is not necessary for declarations to
appear at the beginning of the function.

This example program demonstrates all these requirements:

void main() {

 b.a.x = 10; // 4: external variable 'b' may be used before it is declared

 struct s2 c; // 5: external type 'struct s2' may be used before it is declared

 foo(); // 2: 'foo' may be called before it is defined

}

void foo() { // 1: no declaration is required for 'foo'; this is the definition

 struct s3 { // 8: 'struct s3' must be declared before it is used

 int z;

 } c;

 c.z = 20; // 7: 'c' must be declared before it is used

 int d = 30; // 9: declarations may occur anywhere inside a function

}

DUT {} // 3: the DUT defn may appear anywhere where a function may appear

struct s1 { int x, y; };

struct s2 {

 struct s1 a; // 6: the declaration of 's1' must appear before its use here

} b; // 4: the declaration of 'b' may appear after its use in 'main'

Example 13

3.3 Scope

An identifier can denote an object, a function, a tag or a member of a structure or stream, a label
name, a macro name, or a macro parameter. Macro names and parameters are expanded before
translation, and so are not considered further here. The same identifier can denote different entities at
different points in the source code.

An identifier that denotes a given entity is visible only within a specific region of the source code,
known as its scope. The various entities denoted by an identifier have different scopes, or are in
different namespaces. There are three kinds of scope: function, block, and global.

Any identifier which is a function name or is declared outside a function has global scope. These
identifiers include DUT port and signal names, and drive declaration label names (8.3.7). These
identifiers are visible throughout the source code that makes up the program, with one exception. This

 Page 28/172

LRM 2.7 © 2008-2021 Maia EDA

exception occurs when a structure or stream tag is used in another structure (in other words, when the
second structure includes an instance of the first structure or stream). In this case, the first tag is
considered to have a scope that starts at its introduction for the purposes of inclusion in any other
structure; it is visible throughout the entire source code for any other purposes (this is the exclusion
listed in item (6) of section 3.2).

Every other identifier is introduced in a function parameter list, or within a function. The identifier has
function scope if it introduces a new implicit variable (3.1.1), and otherwise has block scope. The scope
of an implicit starts at the point at which it is first assigned to, and ends at the end of the associated
function. The scope otherwise starts at the point of introduction and terminates at the end of the
associated block.

An identifier at a given scope level (the outer scope) may be hidden by the same identifier in an
enclosed scope (the inner scope). An entity with global scope may always be accessed by using the
global scope operator1, ::. The example below shows a number of cases where an outer scope

identifier is hidden, and prints '4321':

int i = 1; // global scope

void main() { // block scope level 1

 int i = 2;

 do { // block scope level 2

 int i = 3;

 { // block scope level 3

 int i = 4;

 report("%d", i); // 4

 }

 report("%d", i); // 3

 } while(false);

 report("%d", i); // 2

 report("%d\n", ::i); // 1 (global scope operator)

}

Example 14

3.4 Namespaces

Under some circumstances, an identifier may potentially refer to more than one entity at a given point
in the source code. This is possible where the surrounding syntactic context allows the use of the
identifier to be disambiguated, and is formalised in the concept of a namespace. A namespace is
therefore a context for an identifier. The possible namespaces are:

• drive statement label names, which are disambiguated by the syntax of their declaration and use;

• the tags of structures and streams, which are disambiguated by following the keywords struct

or stream. The tags of structures and streams share the same namespace;

• the members of structures of streams, which are disambiguated by following the . operator. Each

structure and stream creates its own namespace;

• all other identifiers.

1 :: is not, strictly speaking, an operator, although it may be considered to be a prefix operator in most circumstances.

 Page 29/172

LRM 2.7 © 2008-2021 Maia EDA

3.5 Storage duration

An object has a storage duration that determines its lifetime. There are two storage durations: static,
and automatic. The lifetime of an object is the portion of program execution during which storage is
guaranteed to be reserved for it. An object exists, and retains its last-stored value, throughout its
lifetime.

An external object, or one declared with the static modifier, has static storage duration. Its lifetime is

the entire execution of the program and its stored value is initialized only once, prior to program
startup. If no initialization is specified for the object, a default initialisation (3.6) is carried out.

Any other object has automatic storage duration. The lifetime of such an object extends from the point
of its declaration, until the enclosing scope terminates. If an initialisation is specified for the object, it is
performed each time the declaration is reached in the execution of the function; otherwise, a default
initialisation (3.6) is carried out each time the declaration is reached.

3.6 Default initialisation

All data and boolean objects (of both static and automatic storage duration (3.5)) which are not

explicitly initialised are given a default initialisation. 4-state objects are initialised to all X, while 2-state

objects are initialised to all 0. Booleans are initialised to false.

Stream objects are always automatically initialised; the "default" initialisation can be considered to be
the initial value of the stream.

All objects are either data, boolean, or stream objects, or an aggregate of these basic objects. An
aggregate is default-initialised by initialising all basic objects within the aggregate. If a basic object
within an aggregate has no explicit initialiser, then that basic object is default-initialised.

3.7 Types

3.7.1 Introduction

Every expression has a type which is known at compile time. The type of the expression determines the
operations that can be carried out on that expression, and the values which can be stored in, or read
from, that expression.

At its simplest level, an expression is simply an identifier which has been declared as an object or as a
function name. In this case, the type of the identifier determines the values which may be stored in or
read from the object, or the values which can be returned from the function.

There are three data types (int, bit, and var, together with a number of specialisations), which are

appropriate for representing 'data' items. The remaining types are a boolean type (bool); a stream

type (stream); a structure type (struct); and an array type.

Some objects have no value, and so have no type; these objects are said to be of a void type. A

function may be declared to be of type void when it is not required to return a value.

 Page 30/172

LRM 2.7 © 2008-2021 Maia EDA

3.7.1.1 Data types

The int, bit, and var types are intended to store numeric 'data'. int and bit represent 2-state

(binary) data, while var represents 4-state data. Objects of these three types are collectively known as

ivar objects. kmap, ubit, and uvar are specialisations of the bit and var types.

kmap simplifies the handling and manipulation of data representing Karnaugh maps. kmap and var

support a different set of operators, and so are considered to be distinct types. The terms arithmetic
type and data type are used to make this distinction; 'arithmetic' excludes kmap, while 'data' includes it.

ubit is an unconstrained bit, while uvar is an unconstrained var. These two specialisations are used

to represent objects whose size is not known in advance. However, the underlying object is a bit or

var object (albeit of an unknown size), so these specialisations do not introduce new types.

real1, real2, and real3 are provided to simplify the handling of floating-point data. These are not

additional types, but are simply synonyms for a bit which is correctly sized to hold IEC single, double,

and extended double-precision data. On most systems, real1 is identical to bit32; real2 is identical

to bit64; and real3 is identical to either bit80 or bit128.

bool is a synonym for bit1 at levels 0 and 1 (3.1.5), and so can be considered to be a data type at

these levels.

3.7.1.2 Non-data types

The structure type is a user-defined aggregate type; it is used to encapsulate a collection of objects
which are potentially of different types (a heterogeneous collection). The array type is equivalent to the
structure type, but encapsulates a collection of objects which are of the same type (a homogeneous
collection).

The stream type represents files on the host operating system, and handles file input and output

operations. The use of a dedicated stream type allows common vector file operations to be handled
simply, without the use of an external I/O library.

bool is a distinct non-data type at Level 2 (3.1.5). There is no string type; the contents of a string

cannot be manipulated.

3.7.1.3 Data object indexing

Data objects are always indexed in a descending fashion. The most significant bit of the object has an
index value of one less than the size of the object, while the least significant bit has index value 0. The
value of the most significant bit is returned by the 'msb operator:

bit4 c = 4'b1000;

assert(c'size == 4);

assert(c'msb == c.(c'size-1));

assert(c'msb == c.(3:3));

assert(c'msb == 1);

Example 15

 Page 31/172

LRM 2.7 © 2008-2021 Maia EDA

3.7.1.4 int properties

The int type represents 'small' two's complement integers. int objects are signed and have a size

which is given by the _DefaultWordSize pragma (12.7), which itself defaults to 32 bits. int is provided

as a programmer convenience (for indexing and looping operations, for example), and is not intended
for modelling hardware.

3.7.1.5 bit and var properties

bit and var objects have no properties apart from their size; they do not, for example, have "signed",

"unsigned", "integer", or "floating-point" properties. A bit or var data object may contain any data

pattern, including data which can be interpreted as a floating-point number.

When using bit and var objects, complexity is provided by operators, rather than by the type itself.

There are, for example, different operators for signed and unsigned integer comparisons, and integer
and floating-point addition. This behaviour reflects the structure of the electronic systems that Maia is
intended to model and verify. In these systems, data is a secondary concern, and simply represents the
contents of a storage location. Electronic systems are primarily concerned with the transformation of
data, in function units. The same storage location may be connected to, for example, an unsigned
integer comparator, a signed integer comparator, or a floating-point adder, at different times.

Maia is therefore fundamentally different from general-purpose object-oriented languages in which data
is the primary concern, and in which complexity is provided by layering properties on top of the data
(in, for example, classes).

3.7.2 Assignment compatibility

Objects a and b are assignment-compatible if the expression a=b is allowable. In most cases,
assignment-compatibility is commutative; in other words, if a=b is a valid expression, then so is b=a.
Any exceptions are listed below.

Arrays a and b are assignment-compatible if both arrays are of the same rank, each rank has the same
bounds, and the array elements are both assignment-compatible and have the same size (3.7.12.4).

Scalars a and b are assignment-compatible in the following circumstances:

1. a and b are both ivar objects

2. a and b are both bool objects

3. If _StrictChecking is less than 2, a is an ivar object and b is a bool object, and vice-versa

4. a and b are kmap objects with the same number of variables

5. a and b are struct objects where both are instances of the same structure definition

6. a and b are stream objects where both are instances of the same stream definition

7. If a is a mode 1 stream, and b is an object of an int or bit type, then the assignment a=b (but

not b=a) is allowable

In all other cases, a and b are not assignment-compatible.

 Page 32/172

LRM 2.7 © 2008-2021 Maia EDA

3.7.3 ubit and uvar

A 2-state data object whose size is not known in advance should be declared as a ubit. Similarly, a 4-

state data object whose size is not known in advance should be declared as a uvar. ubit and uvar

may appear only as a function formal parameter, or as a function return type.

When a formal parameter is of an unconstrained type, its actual size may be retrieved with the 'size

attribute. Alternatively, a 'for all' loop will automatically loop over all values of the actual.

When a function returns an unconstrained object, that object will be sized to whatever was returned by
the function. Different paths through the function may return a 10-bit or a 12-bit object, for example,
on different calls1.

This example returns true if the unconstrained input has odd parity, and false otherwise:

bool oddParity(ubit a) {

 result = false;

 for(int i = 0; i < a'size; i++)

 result ^= a.(i);

}

Example 16

This example byte reverses an arbitrary input with a width which is an integer multiple of 8 bits:

ubit reverse(ubit data) {

 int nbytes = data'size/8;

 int src = data'size-1;

 int dst = 7;

 result = data; // set the return value size

 for(int i=0; i<nbytes; i++) {

 result.(dst:dst-7) = data.(src:src-7);

 dst += 8;

 src -= 8;

 }

}

Example 17

The compiler must statically determine the maximum possible size of an unconstrained formal or return
value. There are some circumstances in which this may be difficult or impossible; this might happen,
for example, in a circular chain of function calls in which there is a cycle of connected unconstrained
return values and unconstrained actuals. In these circumstances it might be possible to complete sizing
by increasing the number of sizing iterations performed by the compiler; see (A4.4).

3.7.4 ivar operations

int, bit and var (ivar) objects have a number of semantic similarities, which are described in this

clause.

1 The returned object is actually statically sized to the maximum size returned by any call of the function; this value may be
found by applying the 'size attribute to the function call. In practice, the return size can almost always be considered to be
dynamically set in the current function call.

 Page 33/172

LRM 2.7 © 2008-2021 Maia EDA

3.7.4.1 Assignment compatibility

ivar objects are assignment-compatible. When a 2-state ivar object is assigned to a 4-state ivar object
the destination bits will have the same value as the source bits. When a 4-state ivar object is assigned
to a 2-state ivar object any metavalue bits in the source are converted to 11. Under most
circumstances2, an ivar object may be assigned to a narrower ivar object, in which case the source data
is truncated. Similarly, an ivar object may be assigned to a wider ivar object, in which case the source
data is either zero-extended, or sign-extended, depending on which assignment operator is used:

bit3 a = 3'b101;

bit4 b, c;

var5 d = 5'b1xz01;

b = a; assert(b == 4`b0101); // the '=' operator zero-extends

c =# a; assert(c == 4`b1101); // the '=#' operator sign-extends

b = d; assert(b == 4`b1101); // truncate, and convert metavals to 1

Example 18

3.7.4.2 Using an ivar object as a boolean

An ivar object may be used in any context in which a boolean is expected. In this case, an all-zero
value is equivalent to false, while any other value is equivalent to true3.

3.7.4.3 Supported operators

The bit and var types support all the operators listed in Table 16, with the exception of () and []

(which are defined only for functions and arrays), and 'offset (which is defined only for arrays,

structures, and streams).

The int type supports the same operators, with the exception that the sized and signed versions of

the operators may not be used where any of the operands are of type int. The 'plain' versions of the

operators will correctly return a signed result.

The 'size and 'meta operators return an int and a bool, respectively, for any ivar operand. The

remaining unary operators have a return type which is the same as the type of the operand.

3.7.4.4 Binary operations

If the operands of a binary operator are both of an ivar type, then:

1. If both operands are of type var, then the operation is carried out using 4-state arithmetic or

logic, and the result is of type var;

2. If one operand is of type int or bit and the other is of type var, then the int or bit is

converted to a temporary var as if by assignment, the operation is carried out using 4-state

arithmetic or logic, and the result is of type var;

1 This is consistent with a definition of 'false' as 0, and 'true' as non-zero.

2 There is an exception if DUT port size checking is enabled; see (3.1.4).

3 This behaviour differs from Verilog. in Verilog, an expression is 'true' if it is non-zero and does not contain metavalues, and is
'false' otherwise. In Maia, an expression is false if it is zero, and is true otherwise. The expression 2'b1x is therefore false in

Verilog, and true in Maia.

 Page 34/172

LRM 2.7 © 2008-2021 Maia EDA

3. If both operands are of type int or bit, the operation is carried out using conventional 2-

state arithmetic or logic. If either operand is of type bit, the result is of type bit; otherwise,

the result is of type int.

3.7.5 int

The int type is primarily intended for general 'software' operations which require a signed type, where

the size of that type is not a specific concern. int is signed, and has a size given by the

_DefaultWordSize pragma (12.7). _DefaultWordSize itself defaults to 32 bits if it has not been

set.

3.7.6 bit

The bit type represents two-state data, where each bit can take on one of the values 0 or 1. The size

of a bit object must be set explicitly, as a decimal integer suffix which immediately follows the bit

keyword, with no intervening whitespace. The suffix may be omitted for a single-bit object (in other
words, bit x is equivalent to bit1 x).

bit a; // 'a' is a one-bit two-state data object

bit18 b; // 'b' is an 18-bit two-state data object (indexed as 17:0)

bit192 c; // 'c' is a 192-bit two-state data object (indexed as 191:0)

Example 19

3.7.7 var

The var type represents four-state data, where each bit can take on one of the values 0, 1, X, or Z. X

and Z are metavalues, and represent "unknown" and "tristate", respectively, in electronic systems. The

'meta postfix operator may be used to determine whether or not an expression contains any

metavalues. expr'meta will return true if expr contains any metavalue bits, and false otherwise.

var is essentially identical to bit, except that operations on var objects are carried out using 4-state

arithmetic and logic, as defined in (3.7.7.3) through (3.7.7.6) below.

3.7.7.1 var declaration

var objects may be explicitly declared in exactly the same way as bit objects (3.7.6). var objects are
additionally created in these circumstances (where 'level' is the _StrictChecking level):

1. Any ports or signals declared in a DUT section are implicitly declared as a correctly-sized
external var

2. A rank-zero K-map (3.7.8) is a one-bit var (a var1)

3. At level 0, implicitly-declared variables are created as a default-sized var (undeclared object x,

for example, is implicitly declared as varnn x, where nn is equal to _DefaultWordSize)

4. At level 0, a function formal parameter which does not have a type specifier is an
unconstrained object of type var (a uvar)

5. At level 0, a function which has no return type specifier returns an unconstrained object of
type var (a uvar).

 Page 35/172

LRM 2.7 © 2008-2021 Maia EDA

3.7.7.2 var operations

The 4-state arithmetic and logic operations are defined in (3.7.7.3) through (3.7.7.6) below. For the
operators which are not listed in these clauses, the 4-state behaviour is as follows:

1. the shift and rotate operators preserve any metavalues;

2. the logical AND and logical OR operators will convert 4-state operands into boolean values

according to 3.7.4.2 above;

3. the conditional operator will convert its first expression into a boolean according to 3.7.4.2
above;

4. an assignment to a 4-state object preserves any metavalues;

5. the remaining operators have the same behaviour for bit and var operands.

3.7.7.3 4-state arithmetic

If a 4-state operand of an arithmetic operator (unary +, -, ++, and --, and binary +, -, *, /, and %)

contains any metavalues, then the result of that operation will be all X1:

bit3 a = 1;

var3 b = 3'b011;

var3 c = 3'bx11;

assert(a + b == 3`b100);

assert(a + c == 3`bxxx);

Example 20

3.7.7.4 4-state comparisons

If a 4-state operand of a relational operator (>, >=, <, and <=) contains any metavalues, then the

result of that operation will be false:

bit3 a = 4;

var3 b = 3`b011;

var3 c = 3`bx11;

assert(!(a < b) && !(a <= b) && (a > b) && (a>= b));

assert(!(a < c) && !(a <= c) && !(a > c) && !(a>= c));

Example 21

3.7.7.5 4-state equality

The 4-state equality operators (== and !=) include any metavalue bits in the comparison:

bit3 a = 4;

var3 b = 3`b100;

var3 c = 3`b10x;

assert(a == b && b != c);

Example 22

1 This is same as the corresponding Verilog behaviour.

 Page 36/172

LRM 2.7 © 2008-2021 Maia EDA

3.7.7.6 4-state logic

Table 9 below defines the results of the 4-state bitwise (&, |, ^, and ~) operators1. The corresponding

tables for the 2-state operators can be found by simply ignoring the (shaded) X and Z rows and

columns.

& 0 1 X Z | 0 1 X Z ^ 0 1 X Z ~

0 0 0 0 0 0 0 1 X X 0 0 1 X X 0 1

1 0 1 X X 1 1 1 1 1 1 1 0 X X 1 0

X 0 X X X X X 1 X X X X X X X X X

Z 0 X X X Z X 1 X X Z X X X X Z X

Table 9: 4-state logic operations

3.7.8 kmap

The kmap type is a specialisation of var, and is used to simplify the specification and testing of

combinatorial functions of several variables. An n-variable kmap is essentially a multi-dimensional var

array of rank n, in which the element addressing has been modified into a reflected-binary Gray-coded
form. For example, Figure 1 below shows a 5-variable Karnaugh map:

1

000 010011001 110 111 101 100

00

01

11

10

1 1 0 1 0 1 1
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 1 1 1 1 0 1

ABC

D
E

Figure 1: 5-variable Karnaugh map

The diagram is shown in a standard form, and shows the required output of a logic function of 5
variables: fn(A,B,C,D,E). These inputs are encoded in a 5-bit binary word, with A being the most

significant input (with a weighting of 24) and E being the least significant bit (with a weighting of 20).

This logic function is coded in Maia as follows:

// declare a 5-variable Karnaugh map

kmap fn =

 1 1 1 0 1 0 1 1

 0 1 0 1 0 1 0 1

 1 0 1 0 1 0 1 0

 0 1 1 1 1 1 0 1;

// examples of K-map usage, using Algol-style indexing:

1 These operations are identical to the corresponding Verilog operations.

 Page 37/172

LRM 2.7 © 2008-2021 Maia EDA

assert(fn[0,0,0,0,0] == 1); // top-left element: ABCDE = 00000 = 0

assert(fn[1,0,0,0,0] == 1); // top-right element: ABCDE = 10000 = 16

assert(fn[0,0,0,1,0] == 0); // bottom-left element: ABCDE = 00010 = 2

assert(fn[1,0,0,1,0] == 1); // bottom-right element: ABCDE = 10010 = 18

Example 23

When accessing individual elements of a kmap – in other words, the function output for a given set of

inputs – it is important to understand the way in which the inputs are coded. To derive the coding for
an n-variable K-map (which therefore contains 2n elements), the map should be drawn as a square with
n rows and n columns (if n is even), or a rectangle with n-1 rows and 2(n-1) columns (if n is odd). The
example above shows a 5-variable function coded in 4 rows and 8 columns. The columns and rows
should then be encoded using reflected-binary Gray addressing, as shown, starting at the top left.

The indexes into a kmap must be binary (in other words, an index variable may not contain a

metavalue). The output, however, is a 4-state value, which must be coded as a one-bit literal constant
(and not a constant expression). The metavalues 1'bx and 1'bz may alternatively be specified as a

case-insensitive X or Z for simplicity1.

K-map initialiser lists may optionally be enclosed in braces, in the same way that scalar initialisers may
optionally be brace-enclosed. These two initialisers are identical:

kmap a = {

 0 X 1 Z

 1 0 0 1

};

kmap b = 0 X 1 Z 1 0 0 1;

Example 24

The precise format of the initialiser list is not important. Each element must be separated by
whitespace, but newlines are not significant. The second initialiser contains a list of 8 elements, so
must encode a 3-variable kmap, with 2 rows and 4 columns.

K-map objects may be declared either as a kmap, or as a kmapn, where n is the number of variables in

the K-map. Objects declared as a kmap must be completely initialised in their declaration to allow the

compiler to derive the number of variables. Objects declared as a kmapn may be left uninitialised if

desired, in which case they are given a default value of all X:

kmap a = 0 1 1 0; // inferred as a 2-variable kmap

kmap2 b = 0 1 1 0; // declared as a 2-variable kmap

kmap2 c; // initialised to {X X X X}

c = b; // c now contains {0 1 1 0}

kmap d; // error: must be initialised

kmap e = 0 1 1 0 1; // error: initialisation must be complete

kmap3 f = 0 1 1 0 1; // Ok: initialised to {0 1 1 0 1 X X X}

Example 25

A single element extracted from a K-map using an indexing operation is of type var (a var1). It is not

possible to extract anything other than a single element (a row or column, for example) from a K-map.

1 This is the only place in which the literals X and Z may be used as constants; these literals will result in a syntax error if used

in any other context.

 Page 38/172

LRM 2.7 © 2008-2021 Maia EDA

K-map objects may be passed to and returned from functions in the normal way.

3.7.8.1 Assignment compatibility

K-maps are assignment-compatible only with other K-maps with the same number of variables. It is not

possible to assign a K-map to, or from, a var array with the same underlying dimensionality.

3.7.8.2 K-map operations

The operators which support K-map operands are listed in Table 10 below. The logic operators use 4-
state logic (3.7.7.6).

Operator result

type
Operation

x'size int Returns the number of elements in x (2n, where n is the number of

variables)

x'meta bool Return true if x contains any metavalues, and false otherwise

~x kmap Bitwise negation; inverts the entire K-map

x = y kmap Assign K-map y to K-map x

x == y bool Test x and y for equality

x != y bool Test x and y for inequality

& | ^ kmap Bitwise and, or, and xor

&= |= ^= kmap Bitwise compound assignment

(e1)?x:y kmap Returns K-map x if expression e1 evaluates true, and K-map y otherwise

(..., x) kmap The comma operator; returns K-map x if x is the last expression

Table 10: kmap operators

3.7.9 bool

An object which has been declared to be of type bool has only two potential values: false, and true.

The specific behaviour of booleans depends on the level of the _StrictChecking pragma (12.7). At

levels 0 and 1 the bool type has no special significance, and no boolean-related type checking is carried
out.

The syntax requires a boolean as the controlling expression for the if, do, while, for, and assert

statements, as an operand of the logical operators, and as the first operand of the conditional operator.
An expression that evaluates to an int, bit or a var may instead be used in these contexts, and is

implicitly converted to a boolean according to (3.7.4.2).

3.7.9.1 Levels 0, 1

bool is not a distinct type at levels 0 and 1; an object declared as a bool is simply a one-bit bit (a

bit1). The false literal is defined as 1'b0, while the true literal is defined as 1'b1.

 Page 39/172

LRM 2.7 © 2008-2021 Maia EDA

An ivar object may additionally be used anywhere where a boolean is required by the syntax. If the
object has an all-zero value, then it is considered to have a value of false; it otherwise has the value
true.

3.7.9.2 Level 2

bool is a distinct type at level 2, and supports only the operators listed in Table 11 below. A boolean

object is assignment-compatible only with another boolean, or with an ivar object.

The binary logical and equality operators listed are defined if both operands are boolean, or if one is
boolean and the other is an ivar:

Operator result type Operation

x'size int Returns 1

x'meta bool Returns false

!x bool Logical negation

= bool Assignment

== != bool Equality

&& || bool Logical AND, OR

(e1)?x:y bool Conditional operator; x and y must both be boolean

(..., x) bool Comma operator; returns boolean x if x is the last expression

Table 11: boolean operators

As for levels 0 and 1, an ivar object may alternatively be used anywhere where a boolean is required by
the syntax.

3.7.10 struct

A structure is a collection of one or more objects, possibly of different types, into a single named
object. Structures are defined and declared conventionally, and may contain scalar or array objects of
any type. Structure elements are accessed conventionally, using a dotted identifier notation.

Structures and streams are, in many respects, syntactically identical. The discussion of structure
definition and declaration below is equally applicable to streams. Structure and stream tags occupy the
same namespace (3.4); it is illegal to give a structure and a stream the same name when they are in
the same scope.

Structures may be passed to and returned from functions in the normal way. Note that the keyword
struct (or stream) must be used when declaring formal parameters and function return types1:

struct s1 {...};

// function 'foo' has a single structure parameter and returns a structure

s1 foo(s1 param) {...} // error; must be...

struct s1 foo(struct s1 param) {...} // Ok

Example 26

1 The keywords are required in C, but not in C++.

 Page 40/172

LRM 2.7 © 2008-2021 Maia EDA

3.7.10.1 Declaration and definition

A structure declaration creates a new structure type, which is either named or anonymous. A structure
definition creates a scalar or array object of a given structure type. The code below shows various
examples of the definition and declaration of structures:

// create named structure type 's1'

struct s1 { int x,y; }; // declaration of 'struct s1'

// create two objects: 'a' is of type 'struct s1', 'b' is of type 'array[4]

// of struct s1'

struct s1 a, b[4]; // definition of a, b

// create objects 'c' and 'd'; both are of type 'array[3] of struct s1'

struct s1[3] c, d; // definition of c, d

// create an anonymous struct type, and objects 'e' and 'f' of that type

struct { int x,y; } e, f; // definition of e, f

// create named struct type s3, and objects 'g' and 'h' of that type

struct s3 { int x,y; } g; // definition of g

struct s3 h; // definition of h

Example 27

Note that the declaration of both stream and structure types must be terminated with a ';' character,

even when there is no trailing object list (as in the first example above). The semicolon is required
because the object list is optional; without it, the parser would find it difficult to distinguish between a
type declaration with a trailing object list, and a type declaration with no object list, immediately
followed by a new statement.

Structures may contain declarations of other structures. The name of the nested structure is placed in
the same scope as the structure in which it is nested. This code is therefore legal1:

struct S { struct T {...}; };

struct T x;

Example 28

3.7.10.2 Structure assignment compatibility

Structures are assignment compatible only if they are of the same type:

struct s1 { int x, y; } a;

struct s2 { int x, y; } b;

struct s1 c;

a = c; // Ok; a and c are assignment-compatible

c = b; // Error; c and b are not assignment-compatible

bool d = a == b; // Error; a and b are not assignment-compatible

Example 29

1 This again follows C practice; the code is illegal in C++.

 Page 41/172

LRM 2.7 © 2008-2021 Maia EDA

3.7.10.3 Structure operations

The operators which support structure operands are listed in Table 12 below; x and y must be of the

same type. Note that an object of type 'array of struct' is not a structure.

The 'offset operator may also be applied to any member in a structure to find that member's offset

within the structure, in bits.

Two assignment-compatible structures may be tested for equality and inequality; the structures are
equal if every member contains the same data. For a member which is a stream, the stream identifiers
(or 'handles') are tested for equality; the identifiers will compare equal if they refer to the same stream.

Operator result
type

Operation

x'size int Return the size of structure x, in bits

x'meta bool Return true if x contains any metavalues, and false otherwise

x.m any Return member m in x

x = y struct Assign struct y to struct x

x == y bool Test x and y for equality

x != y bool Test x and y for inequality

(e1)?x:y struct Returns structure x if expression e1 evaluates true, and structure y otherwise

(..., x) struct The comma operator; returns structure x if x is the last expression

Table 12: structure operators

3.7.10.4 Limitations

Structures may contain other structure objects, but not references to those objects; this means that

linked lists of structures cannot be built.

3.7.11 stream

Stream objects handle file read and write operations. stream is not a single type; it is instead a family

of types which are specialised for specific file operations. Two stream types are provided: mode 1
streams provide random read access into text data files, while mode 2 streams provide sequential write
access to text data files. These two stream types do not provide generalised file I/O; they are instead
specialised to allow the trivial creation and reading of data files which contain whitespace-separated
data fields.

The syntax of stream definitions and declarations is essentially identical to the equivalent structure
syntax (see 3.7.10.1). In a structure, members are explicitly declared with a type and a name. In a
stream, by contrast, there are no explicit members; the compiler automatically creates members using
the information found in the stream's format property. These members can then be accessed in exactly
the same way as structure members, using a dotted notation. Mode 1 and 2 stream members
correspond to data fields within text files.

Objects of a stream type may be viewed as either handles to the underlying stream or, alternatively, as
references to that stream; both views are equivalent. The term handle is generally used here for clarity;

 Page 42/172

LRM 2.7 © 2008-2021 Maia EDA

this does not imply that the stream is represented by a small integer. There are no operators which
provide access to the underlying implementation of a stream (a stream handle cannot, for example, be
read into an integer).

The representation of a stream as a handle means that streams are passed to functions by reference
(5.8), whether or not the & modifier is used for the formal parameter. In other words, if a stream is

passed to a function, that function sees exactly the same stream as the caller, and not a local copy.

Mode 1 and 2 streams provide no operators for opening and closing the stream; these operations are
carried out automatically. Global and static streams are opened at the start of program execution, and
remain open throughout the lifetime of the program; local streams (those declared within a function)
are opened when the definition is encountered, and are closed when the function returns. If it is
necessary for a local stream to retain state between function calls then that stream should be declared
as static.

3.7.11.1 Mode 1 streams

Mode 1 streams are read-only streams that may be accessed randomly. Each line of the corresponding
text file which is not a comment must contain a set of data fields which are described by a format
specification. The file should contain only 2-value data; mode 1 streams cannot be used to read data
that contains X and Z metavalues. The stream is analysed and processed during compilation and an

error is reported if any data fields are found to contain invalid data. The file may contain arbitrary
comments and whitespace, and any data that can be parsed as a constant (2.7), although the
preceding size and base prefix can be omitted with an appropriate format string (3.7.11.1.4).

Mode 1 streams provide no operations to open or close the associated text file, or to explicitly read
either entire lines or individual fields; these operations are handled automatically. The stream is
positioned to a given line in the (processed) file by assigning an integer to the stream. This operation
automatically reads the data fields in that line of the file. It is guaranteed that the stream will always
point to the first line of the file when it is first used, and that the data fields will contain the
corresponding data from the first line of the file.

3.7.11.1.1 Mode 1 pre-processing

The data file is located and processed during compilation. The compiler confirms that the file exists; it
then removes all comments and superfluous whitespace from a temporary version of the file, and
confirms that each line of the resulting file is appropriate for the format. An error is issued if any data
contains metavalues, or if any significant data bits have to be truncated to match a format
specification. A warning is issued if any sized data item must be extended to match a format
specification.

The resulting temporary file contains exactly one line for each set of data inputs in the source file. The
number of lines in this temporary file is defined as the 'size' of a mode 1 file. In the description below,
a line refers to this processed set of data inputs, which contains one or more data fields; offset refers
to the zero-based line number in the temporary file; and size refers to the number of lines in the
temporary file. The original file is not modified by pre-processing.

3.7.11.1.2 Mode 1 file positioning

A mode 1 stream is set to a given offset simply by writing an integer to the stream; this integer is the
zero-based offset in the processed file. Note that the offset of a line in the original and the processed
files will not, in general, be the same. A specific data item may occur on, for example, line 20 of the

 Page 43/172

LRM 2.7 © 2008-2021 Maia EDA

input file, but might appear on line 10 of the processed file after stripping comments and whitespace. A
mode 1 offset is then essentially a 'meta'-offset which refers only to the significant lines in the input
file.

Any integer written to the stream is reduced modulo the size of the file; this means that it is not
possible to have a file positioning error. A file offset therefore has the same behaviour as a 'small' bit

or var object. The value of a bit4, for example, wraps around from 15 to 0 when incremented. The

offset of a file which contains 100 lines wraps around from 99 to 0 when incremented, or from 0 to 99
when decremented, in exactly the same way.

The current offset in a file can be retrieved using the 'offset operator. The addition and subtraction

operators are overloaded when one of the operands is a mode 1 stream and the other is an int or

bit. In this case, the operator reads the current file offset and returns the sum or difference of the

offset and the second operand. This behaviour can be used to step arbitrarily through the file. Some
examples of file positioning are given in the code below; this code assumes that the file contains at
least 15 lines.

stream s1 a;

a = 0; // file rewind (automatic when the stream is first used)

--a; // set to the last line in the file

assert(a'offset == a'size-1);

a = 10; // set to offset 10 (line 11)

a = 4 + a; // set to offset 14 (line 15)

a -= 3; // set to offset 11

a++; // set to offset 12

Example 30

Any file positioning operation automatically reads the data fields at the new offset.

3.7.11.1.3 Mode 1 stream declaration

A mode 1 stream type must be declared with three properties: a mode, a file, and a format. The mode
must be the integer 1. All three properties must be present in the declaration, and may appear in any

order. An example of a mode 1 stream declaration is:

stream s1 {

 mode 1;

 file "vectors/testfile.dat";

 format "%8'i %64'h %f", f1, f2, f3;

} a;

Example 31

This declaration creates a new type of stream s1, and a new object a of this type. The corresponding

text file is searched for in directories which are relative to the location of the source file containing the
declaration. In this case, the compiler expects to find a directory named vectors in the same directory

as this source file, and expects to find a file named testfile.dat in that directory. The file may be

searched for in an absolute location by appropriately prefixing the filename (with '/' or 'C:\', for

example).

3.7.11.1.4 Mode 1 format property

The format property specifies the expected contents of each line of the input file. It is composed of a
string containing text which should be matched in the input, and one or more conversion specifications,

 Page 44/172

LRM 2.7 © 2008-2021 Maia EDA

followed by one or more field names. Each conversion specification requires a corresponding field
name; the first conversion specification is associated with the first field name, and so on. There must
be exactly the same number of conversion specifications as field names.

 For the example above, a line is expected to start with an 8-bit integer, followed by whitespace,
followed by a 64-bit hex integer, followed by whitespace, followed by a floating-point value. Any
subsequent fields on the line are ignored. If it was necessary to read only the first 8-bit integer on this
line, then the format string

format "%8'i", f1;

would be sufficient.

The format string must include exactly one name for each field. In the example above, the 8-bit integer
field is named f1, the 64-bit integer field is named f2, and the float field is named f3. These are user-

supplied names for automatically-created read-only members within the stream object, which contain
the current value of the corresponding field.

The field data can be read using the same dotted notation used for structures. In this case, the current

values of the 3 fields can be read as a.f1, a.f2, and a.f3. These values are automatically updated

when the stream offset changes, to give the field values at the new offset. The fields may be
considered to be read-only objects of a bit type, with a declared size given by the field width.

Any text in the format string which is not a conversion specification, and which is not whitespace, must
be matched exactly.

3.7.11.1.5 Mode 1 conversions

A conversion specification is composed of the % character, optionally followed by a field width, followed

by a conversion character. If the field width is present, it must be a decimal integer, which must be
followed by an apostrophe or a grave accent (back-tick) character. A conversion specification may also
be specified as %%, when it is necessary to match a single % character in the input. The conversion

characters supported for mode 1 are listed below.

f Matches a floating-point constant in the format defined in (2.7.3). If a field width is present,

it must be 0, 1, or 2, for single, double, or extended double precision, respectively; the

width defaults to 2 if it is not present. If the constant itself includes a precision suffix then

that suffix must match the field width1.

i Matches any integer constant in the format defined in (2.7). If the constant does not have a

size specification, it is assumed to have the size specified by _DefaultWordSize. In

normal use, no field width is specified, and the width is derived from the size of the input
data.

h d o b Matches integer data in base 16, 10, 8, or 2, respectively. The input should contain only

underscore characters and characters which are appropriate for the selected base; it must
not contain any prefix characters. A field width is mandatory for these conversions.

1 mtv's Verilog code generator supports only double-precision float data; an error will be reported if either the field width or the
suffix do not have the appropriate values for double-precision.

 Page 45/172

LRM 2.7 © 2008-2021 Maia EDA

For all conversions, the file data may optionally be preceded by a '–' character. For the integer

conversions, the result is derived by taking the two's complement of the input data, for the appropriate
field width.

For the h, d, o, and b conversions, a field width must be provided, and the data in the input file may

not contain a size prefix. An error will be reported if any of the data items corresponding to this field
cannot be represented in the specified width.

For the i conversion, a field width will not normally be provided, and the field width is found from the

input data. In order for the compiler to derive the field width it is necessary for all the data items
corresponding to this field to have the same size; an error is reported if this is not the case.

For the i conversion, a field width may be provided if necessary. In this case, an error will be reported

if any data items cannot be represented in the field width, and a warning will be reported if any
explicitly-sized data items must be extended to reach the field width.

3.7.11.1.6 Mode 1 stream example

Consider, for example, this input file:

/* comments

 */

vector 1 data 10 // comment

vector /* */ 2 data 20

vector 3 data 30

// comment

/* */ vector 4 /* */ data 42

Example 32

In this case, the processed file contains 4 lines, has a size of 4, and can be accessed with offsets of 0,
1, 2, and 3. This program is sufficient to read the entire file (assuming that the file is named 'test.dat',
and is in the same directory as the program) and to display all eight values:

/* this program produces the output:

offset 0: vector is 1; data is 10

offset 1: vector is 2; data is 20

offset 2: vector is 3; data is 30

offset 3: vector is 4; data is 42

*/

stream s1 {

 mode 1;

 file "test.dat";

 format "vector %i data %i", f1, f2;

} a;

void main() {

 for(int i=0; i<a'size; i++) {

 a = i; // set the file offset

 report("offset %d: vector is %d; data is %d\n", a'offset, a.f1, a.f2);

 }

}

Example 33

 Page 46/172

LRM 2.7 © 2008-2021 Maia EDA

3.7.11.1.7 Mode 1 'for all' operation

A convenient way to iterate through all the lines in a mode 1 file is to use the for all statement. The

example above can be more compactly coded as:

void main() {

 for all a

 report("offset %d: vector is %d; data is %d\n", a'offset, a.f1, a.f2);

}

Example 34

The for all statement as used here is defined to be equivalent to:

void main() {

 a = 0; // automatic rewind

 do {

 report("offset %d: vector is %d; data is %d\n", a'offset, a.f1, a.f2);

 } while((++a)'offset); // relies on offset wrap-around

}

Example 35

3.7.11.1.8 Mode 1 stream assignment compatibility

Only mode 1 streams of the same type are assignment-compatible. This definition of assignment
compatibility is the same as the corresponding one for structures; see 3.7.10.2.

3.7.11.1.9 Mode 1 stream operators

The operators which may be applied to mode 1 streams are listed in Table 13 below. When a stream is
read in an expression the value returned is the stream, except in one specific case: the addition and
subtraction operators are overloaded to read the current offset in the stream, rather than the stream
itself.

The first column in the table shows the operator. In this column, x, y, and z are expressions which

evaluate to the same stream type (and so are assignment-compatible), and i is an expression which

evaluates to an int or bit type. x, y, and z may be any expression that evaluates to a scalar stream.

Note that an object of type 'array of stream' is not a stream.

 Page 47/172

LRM 2.7 © 2008-2021 Maia EDA

Operator result

type
Operation

x'size int Return the number of lines in stream x

x'offset int Return the current offset in stream x

x++ stream Increment the offset in x, and return the old state of x

x-- stream Decrement the offset in x, and return the old state of x

x.f bit Return the value of field f in x

++x stream Increment the offset in x, and return the new state of x

--x stream Decrement the offset in x, and return the new state of x

x+i, i+x int Read the stream offset from x, carry out the addition, and return the int

result

x-i, i-x int Read the stream offset from x, carry out the subtraction, and return the

int result

x = y stream Assign stream y to stream x, and return stream x

x = i stream Set the offset of stream x to i, and return stream x

x += i stream Identical to (x = x+i), and so returns stream x

x -= i stream Identical to (x = x-i), and so returns stream x

(e1)?y:z; stream The ternary operator; y and z must be assignment-compatible. Returns

stream y if e1 evaluates true, and stream z otherwise

(..., x) stream The comma operator; returns stream x if x is the last expression

Table 13: mode 1 stream operators

3.7.11.2 Mode 2 streams

Mode 2 streams are write-only streams that must be accessed sequentially. Each line of the output text
file contains a set of data fields which are described by a format specification; each line of the file must
therefore have the same format. It is only possible to write 2-value data; a mode 2 stream cannot be
used to write data that contains X and Z metavalues.

The stream is written by assigning data to any fields defined by its format specification (3.7.11.2.2),
and then applying the pre-increment operator to the stream object. The increment operation writes the
current line, and increases the stream size by one. The output file is created when the object is
declared; if it already exists, it will be over-written. The first increment operation therefore writes the
first line of the file.

If a data field is not assigned to before incrementing the stream, that field will retain its last value. The
initial value of a field is undefined. An error is reported if a given field is never written to; however, no
error is reported if a field is written on some occasions, but not others.

Mode 2 streams are associated with a single write-only output file, and it is therefore not possible for
multiple stream objects to have their own private copy of this file. It therefore makes little sense to

 Page 48/172

LRM 2.7 © 2008-2021 Maia EDA

declare multiple objects of the same mode 2 stream type. Where this does happen, the objects are
defined to be references to each other:

// a and b are defined to be the same object, which writes to a single output file:

stream m2 {

 mode 2;

 ...

} a, b;

// but c and d are different objects, which read from their own private copies of

// an input file:

stream m1 {

 mode 1;

 ...

} c, d;

Example 36

3.7.11.2.1 Mode 2 stream declaration

A mode 2 stream is defined in the same way as a mode 1 stream (3.7.11.1.3), except that the mode
must be the integer 2. The specified file is opened for writing; if the file already exists, it is over-
written.

3.7.11.2.2 Mode 2 format property

The format property specifies the required form of each line in the output file. It has the same form as
a mode 1 format (3.7.11.1.4), and is made up of a string containing whitespace1, text which is copied
to the output line, and conversion specifications; the string is followed by a list of field names.

3.7.11.2.3 Mode 2 conversions

The conversion specification is the same as the report statement conversion specification (6.13). The

conversion specifiers supported for mode 2 are:

f e E g G Floating-point output

x d o b Hexadecimal, decimal, octal, and binary output, respectively

3.7.11.2.4 Mode 2 stream fields

Mode 2 stream fields are write-only objects with the properties of a bit, and can be assigned to from

any object which is assignment-compatible with a bit. The size of the field is determined statically by

the compiler, by examining the size of all objects which are assigned to the field2. It is an error if a
given field is assigned to from multiple objects which do not have the same size.

1 Whitespace in the format string is collapsed into a single space in the output line.

2 For the report statement, the arguments are single expressions with a known size; for mode 2 format specifications, the
arguments (fields) are simply names, and their size must be determined from assignments to the fields.

 Page 49/172

LRM 2.7 © 2008-2021 Maia EDA

stream m2 {

 mode 2;

 file "foo";

 format "%x %6.3f", field1, field2;

} a;

int4 b;

var5 c;

a.field1 = b; // 'field1' sized at 4 bits

...

a.field1 = c; // error: is 'field1' 4 or 5 bits?

Example 37

3.7.11.2.5 Mode 2 stream assignment compatibility

Only mode 2 streams of the same type are assignment-compatible. However, since all objects of a
given mode 2 stream type are actually the same object, the concept of assignment compatibility is
essentially redundant. The assignment and ternary operators are therefore also redundant with mode 2
stream operands, but are defined to allow these operators to be used with structure operands which
contain mode 2 streams.

3.7.11.2.6 Mode 2 stream operators

The operators which may be applied to mode 2 streams are listed in Table 14 below. When a stream is

read in an expression the value returned is the stream itself.

The first column in the table shows the operator. In this column, x, y, and z are expressions which

evaluate to the same stream type (and so are assignment-compatible). Note that an object of type
'array of stream' is not a stream.

Operator result
type

Operation

x'size int Return the number of lines in stream x; will be 0 before the first increment

operation

x.f void Mode 2 stream field, write-only; see 3.7.11.2.1

++x stream Write the current line, increment the size of stream x, and return x

x = y stream Assign stream y to stream x, and return stream x

(e1)?y:z stream Conditional operator; y and z must be assignment-compatible. Returns

stream y if e1 evaluates true, and stream z otherwise

(..., x) stream Comma operator; returns stream x if x is the last expression

Table 14: mode 2 stream operators

 Page 50/172

LRM 2.7 © 2008-2021 Maia EDA

3.7.12 array

Objects may be combined into arrays, which are aggregates of objects of the same type. Arrays are

declared by listing the maximum size of each dimension in square brackets. Consider, for example, the
array object defined by this declaration:

int [3][4][5] a;

Here a is a 3-dimensional array of 3 x 4 x 5 ints. The expression a[i] yields a two-dimensional array

of 4 x 5 ints; the expression a[i][j] yields a one-dimensional array of 5 ints; and, finally, the

expression a[i][j][k] yields a scalar object of type int. The rank of an expression or object is

defined as its dimensionality. a is a 3-dimensional array and has rank 3. The expression a[i],

however, has rank 2; the expression a[i][j] has rank 1; and the expression a[i][j][k] has rank

0. Any scalar object has rank 0.

Arrays are stored in memory in row-major order; in other words, the last subscript varies fastest.

3.7.12.1 Array indexing

Zero-based indexes are used when accessing an array. For this example, the first index must evaluate
to an integer in the range 0 to 2; the second must evaluate to an integer in the range 0 to 3; and the
third must evaluate to an integer in the range 0 to 4. The index expressions must not contain any
metavalues. A combination of static and dynamic checking is used to confirm that all array indexes are
in range. An array index which is a constant expression is checked during compilation, and a syntax
error is raised if it is out of range. A dynamic index is checked at run-time, and a run-time error is
raised if it is out of range (see 11.1.1 below).

3.7.12.2 Subscript positioning

Arrays may be declared by listing the subscripts after the type name, or after the object name, or any
combination of the two. These declarations, for example, define objects of type int[3][4][5], and a

function which returns an int[3][4][5]:

int [3][4][5] a; // form 1

int [3][4] b[5]; // combined form 1 and 2

int [3] c[4][5]; // combined form 1 and 2

int d [3][4][5]; // form 2

int[3][4][5] foo {...} // function returning array, form 1

Example 38

However, it should be noted that only form 1 can be used to define a function which returns an array
object, and form 1 also makes it obvious that the object's dimensionality is part of the type of that
object1.

1 Form 2 is provided for compatibility with C and related languages. More recent languages tend to use form 1; Maia's ability to
use both forms, and a combination of the two, follows Java usage. Java, however, provides a (deprecated) feature to allow
functions to return arrays using form 2; Maia requires the use of form 1. C does not allow functions to return arrays.

 Page 51/172

LRM 2.7 © 2008-2021 Maia EDA

3.7.12.3 Comma-separated dimension lists

Arrays may be declared, or accessed, using an alternative syntax, in which the array dimensions are
listed in a single pair of square brackets, with a comma-separated list of dimensions1. In this example,
both a and b are of type int[2][3] (or, equivalently, int[2,3]):

int [2][3] a = {{0,1,2}, {3,4,5}};

int b[2,3] = {{0,1,2}, {3,4,5}};

assert(a == b);

assert(a[0][1] == b[0,1]);

assert(a[0,1] == b[0][1]);

Example 39

The comma-separated list is more compact when accessing multi-dimensional arrays. kmap objects, in

particular, may have many dimensions and can be tedious to access using the fully-bracketed form.

When using this alternative syntax, array index expressions may not themselves be comma

expressions, unless the comma expression is enclosed in parentheses2.

3.7.12.4 Array assignment compatibility

Expressions that evaluate to arrays are assignment-compatible only if:

1. they have the same rank;

2. each dimension bound is identical;

3. the base type of each array is assignment-compatible;

4. the objects of that base type have the same size.

This code shows various examples of arrays which are, or are not, assignment-compatible:

int [3,4,5] a;

int [4,5] b;

var32 [5] c;

bit7 [5] d;

a[0] = b; // Ok

b = a[1]; // Ok

c = a[0,0]; // Ok (_DefaultWordSize assumed to be 32)

d = a[0,0]; // error: a is an array of ints; d is an array of bit7

Example 40

1 The comma-separated list is used in Algol and derived languages; the fully-bracketed list is used in C and related languages.

2 Function argument lists (argument-expression-list), which are also comma-separated, have the same restriction.

 Page 52/172

LRM 2.7 © 2008-2021 Maia EDA

3.7.12.5 Array operations

The operators which support array operands are listed in Table 15 below. For the ternary operator (?:)

x and y must be of the same type; for the remaining operators, they must simply be assignment-

compatible.

The 'offset operator may also be applied to any element in an array to find that element's offset

within the array, in bits.

Two assignment-compatible arrays may be tested for equality and inequality. The arrays are equal if all
corresponding elements contain the same data. For an array of streams, the stream identifiers (or
'handles') are tested for equality; the identifiers will compare equal if they refer to the same stream.

Operator result type Operation

x'size int Return the size of array x, in bits

x'meta bool Return true if x contains any metavalues, and false otherwise

x[e1] any Return element e1 in x

x = y x Assign array y to array x

x == y bool Test x and y for equality

x != y bool Test x and y for inequality

(e1)?x:y x Returns array x if expression e1 evaluates true, and array y otherwise

(..., x) x The comma operator; returns array x if x is the last expression

Table 15: array operators

 Page 53/172

LRM 2.7 © 2008-2021 Maia EDA

4 OPERATORS AND EXPRESSIONS

4.1 Introduction

An object is a region of data storage which has an associated value. Every object is either a data object
(2-state or 4-state), a boolean, a stream, or an aggregate containing a collection of data, boolean, and
stream objects. Objects may be manipulated or combined using operators, in expressions.

The order in which the objects in an expression are combined is defined by the language's precedence
and associativity rules (4.5.1). Each such combination (an addition or subtraction, for example) defines
a sub-expression. Each sub-expression is evaluated in turn, and is replaced by a temporary object; this
temporary object itself has a value, which may be combined with the values of the remaining sub-
expressions.

An expression has a number of properties, which may be retrieved with the attribute operators
(4.5.4.6). The most significant of these is its size. The meaning of the size attribute depends on the
type of the object. However, in most cases, an object's size is the number of bits (2-state or 4-state)
which are required to store that object. An object's size may range from 1 bit, up to a compiler-
determined maximum, which is at least 224 bits.

With the exception of int objects, Maia does not specify any interpretation of the data pattern within a

data object. However, some operators (the signed comparisons, for example) may assume that the
data is in 2's complement format, and that the data may be sign-extended by copying the value of the
top bit. Other operators may assume that the data is in an IEC floating-point format. A non-int data

object itself has no property that specifies what format the data is in; the data interpretation is a
higher-level concern, and is the responsibility of the programmer. In this respect, non-int data objects

can be thought of as memory locations within a digital electronic system. The storage location itself has
no properties, apart from its size; the control circuitry simply routes the contents of the storage location
to a function unit, and then writes the transformed data to the same, or another, storage location. The
function unit determines the operation to be carried out, and a given storage location may be
connected to any function unit as required. In Maia, the function unit corresponds to an operator.

Under most circumstances, objects can be combined in expressions in a simple and intuitive way. This

code, for example, carries out 4-state integer arithmetic operations on 24-bit variables:

var24 acc, b[10], c[10];

for(i=0; i<10; i++)

 acc += b[i] * c[i];

Example 41

For this example, the multiplication and addition are automatically selected as 24-bit operators, and the
assignment to acc is selected as a 24-bit assignment. However, a number of potential complications

may arise in these cases:

• if floating-point operations are required; or

• if the two operands of a binary operator have different sizes; or

• if an explicitly-sized operator is required.

 Page 54/172

LRM 2.7 © 2008-2021 Maia EDA

Floating-point operations are described in (4.6). The complication in the remaining two cases is that at
least one operand will have to be truncated or extended and, if it is extended, it may potentially require
sign-extension. The sizing and extension rules that govern these cases are described (4.4). These rules
define a hardware-centric view of arithmetic and logical operations, which is, in general, unlike the
equivalent rules used in general-purpose programming languages, or in common HDLs.

4.2 Operator syntax

Many operators are available in both signed and unsigned versions, and in explicitly sized versions. The
sign and size options must follow the basic operator symbol, with no intervening whitespace. The full
operator syntax is OP[#][$n], where the parts in brackets [] are optional. The # denotes a signed

version of the operator, while the $n denotes an explicitly-sized (n-bit) operator.

All versions of an operator have the same precedence and associativity as the basic operator itself. An
operator which is signed or sized may optionally be enclosed in parentheses for clarity.

The base operators are listed in Table 16, while the floating-point operators are listed in Table 18,
Table 19, and Table 20. Some examples of operators are:

A = B - C; // unsigned subtraction, implicitly sized

A = B -# C; // signed subtraction, implicitly sized

A = B -$8 C; // unsigned 8-bit subtraction

A = B -#$21 C; // signed 21-bit subtraction

A = B (-#$21) C; // operators may be bracketed for clarity

var16 d;

A =$21 d; // unsigned (zero-extending) assignment (16 to 21 bits)

A =#$21 d; // signed (sign-extending) assignment (16 to 21 bits)

A = (~#$21) d; // invert operator: sign-extend d to 21 bits, invert

Example 42

4.3 Signed operators

Signed and unsigned operators are distinguished by the presence or absence, respectively, of a trailing
character. The + operator, for example, represents an unsigned addition, while the +# operator

represents a signed addition. There are only two differences between the signed and unsigned versions
of an operator:

1. If an input operand requires extension, then it will be sign-extended for a signed operator,

and zero-extended for an unsigned operator

2. For some operators the signed and unsigned versions of the operator may have different
behaviour, and produce different results when given the same operands. The affected
operators are the comparisons, right shift, division, and remainder (<, <=, >, >=, >>, /, %)1.

The operators which may be signed are shaded in Table 16 below.

1 The left shift operator has named signed and unsigned alternatives (.SLA for <<#, and .SLL for <<), but both have the

same behaviour; the names are provided only for consistency with the right-shift versions (.SRA and .SRL).

 Page 55/172

LRM 2.7 © 2008-2021 Maia EDA

4.4 Expression evaluation

When evaluating an expression, the current operator is first identified using the precedence and
associativity summarised in Table 16. This operator, together with its operand(s), forms the current
sub-expression. This sub-expression is evaluated according to (4.4.1), and is replaced with a temporary
object of the same type and size as the sub-expression. This procedure is repeated until the complete
expression has been evaluated.

Expressions may be arbitrarily parenthesised to specify the order in which operators should be

evaluated.

The operands of an operator are always evaluated in a left-to-right order1:

int a = 4;

a = a++ + a; assert(a == 9); // a is guaranteed to be 9, and not 8

a = fn1() – fn2(); // fn1 is called before fn2

Example 43

4.4.1 sub-expression evaluation

The procedure for evaluating the current sub-expression is as follows:

1. The operation size is first determined as:

i. If the operator is explicitly sized, then that size is the operation size;

ii. Otherwise, if the operator is a shift or rotate, then the operation size is the size of the left
operand;

iii. Otherwise, the operation size is the size of the largest operand.

2. If any operands of the current operator have a size which is greater than the operation size,
then those operands are truncated to the operation size

3. If any operands of the current operator have a size which is less than the operation size, then
those operands are zero-extended if the operator is unsigned, and sign-extended if the operator
is signed, to the operation size

Note that:

a) The assignment operator has a single operand (the right hand side)

b) The conditional or ternary operator is considered to have 2 operands for the purposes of
deriving the operation size. In the expression e1?e2:e3, for example, only e2 and e3

participate in operation sizing

c) The compound assignments are expanded before applying these rules. The expression a&=b,

for example, is treated as a=a&b

d) The floating-point operators are explicitly sized (as single, double, or extended-double
precision), and the operands are required to have the same size as the operator2. There is
therefore no potential ambiguity when evaluating floating-point sub-expressions.

1 Left-to-right ordering is common in many languages (C# and Java, for example); the ordering is undefined in C.

2 If an operand does not have the required size (a single-precision operand is required for a double-precision operator, for
example) then it should be converted to the correct size using a cast operator (4.5.6).

 Page 56/172

LRM 2.7 © 2008-2021 Maia EDA

4.5 Operators

4.5.1 Precedence and order of evaluation

Table 16 summarises the operator precedence and associativity rules. The operators listed in (4.5.4)
onwards are also listed in order of precedence, with the highest first. Operators on the same line of
Table 16 have the same precedence; rows are in order of decreasing precedence1. Where an operator
in the table implies an arithmetic operation (++, --, *, /, %, +, -, <, <=, >, and >=), that operation is

defined only for integer values, using 2-state or 4-state integer arithmetic. The floating-point operators
are listed separately (on page 74), but have the same precedence and associativity as the integer
version. Note that the equality operators (== and !=) are bitwise operators, and so are valid for both

integer and floating-point use.

An operator's associativity determines the grouping of operators at the same precedence level. The
addition and subtraction operators, for example, associate left-to-right, and the expression A–B+C is

therefore evaluated as (A–B)+C, rather than A–(B+C).

 Operators Associativity

postfix: () [] ++ -- 'size 'msb 'meta left to right

 'offset 'last .(x) .(x:y) .

prefix: ! ~ ++ -- + - (cast) right to left

binary: * / % left to right

 + - left to right

 << >> .R<< .R>> left to right

 < <= > >= left to right

 == != left to right

 & left to right

 ^ left to right

 | left to right

 && left to right

 || left to right

ternary: ?: right to left

assignment: = *= /= %= += -= &= right to left

 ^= |= <<= >>= .R<<= .R>>=

comma: , left to right

Table 16: precedence and associativity of operators

The operators which may optionally be signed and sized are shaded in the table.

1 Apart from some deletions (->, &, *, and sizeof) and additions ('size, 'msb, 'meta, 'offset, 'last, .(x),

.(x:y), .R<<, .R>>, .R<<=, and .R>>=), this table is otherwise identical to the corresponding table for C.

 Page 57/172

LRM 2.7 © 2008-2021 Maia EDA

4.5.2 Operator equivalents

A number of operators have alternative names. These are listed in Table 17.

Operator Form 1 Form 2

Rotate Left .R<< .ROL

Rotate Right .R>> .ROR

Shift Left Logical << .SLL

Shift Left Arithmetic <<# .SLA

Shift Right Logical >> .SRL

Shift Right Arithmetic >># .SRA

Unsigned Less Than < .ULT

Unsigned Greater Than > .UGT

Unsigned Less than or Equal <= .ULE

Unsigned Greater than or Equal >= .UGE

Signed Less Than <# .SLT

Signed Greater Than ># .SGT

Signed Less than or Equal <=# .SLE

Signed Greater than or Equal >=# .SGE

Equality == .EQ

Inequality != .NE

Logical AND && and

Logical OR || or

Table 17: Operator equivalents

The textual alternative names for the shifts and comparisons are already implicitly signed or unsigned,
and so may not be followed by a # character. They may, however, be sized. Some examples of valid

and invalid operators are shown below.

.SRL // implicitly-sized right shift

.SRL# // invalid; .SRL is implicitly unsigned

.SRL$12 // 12-bit right-shift

.SRA# // invalid; .SRA is implicitly signed

>># // shift right arithmetic; equivalent to .SRA

Example 44

4.5.3 Primary expressions

Syntax

primary-expression:

 identifier

 constant

 (expression)

 Page 58/172

LRM 2.7 © 2008-2021 Maia EDA

4.5.4 Postfix operators

Syntax

postfix-expression :

 primary-expression

 postfix-expression [expression]

 postfix-expression (argument-expression-listopt)

 postfix-expression . identifier

 postfix-expression ++

 postfix-expression --

 postfix-expression . bitslice

 postfix-expression ` attribute-operator

 postfix-expression ' attribute-operator

4.5.4.1 Array subscripting

A postfix expression followed by one more expressions in square brackets designates an element of an
array object (3.7.12).

4.5.4.2 Function calls

A postfix expression followed by parentheses () containing a possibly empty list of comma-separated

expressions is a function call. The expressions within the parentheses are the actual parameters to that
function; the expressions are evaluated left-to-right.

Syntax

argument-expression-list :

 assignment-expression

 argument-expression-list , assignment-expression

4.5.4.3 Structure and stream members

A postfix expression followed by the . operator and an identifier indicates a structure or stream access.

The postfix expression must evaluate to a structure (3.7.10) or stream (3.7.11), while the identifier
must be a member within that structure or stream.

4.5.4.4 Postfix increment and decrement operators

A postfix expression followed by ++ or –- indicates an increment or decrement operation. In both

cases, the result is the value of the operand. After the result is obtained, the value of the operand is
incremented, for ++, or decremented, for --. The operand must be an lvalue.

If the operand evaluates to a data object, then the increment or decrement operation is carried out by
adding or subtracting 1 to or from the least significant bit of the object (in other words, it is an integer
operation). If the operand evaluates to a mode 1 stream, then the increment or decrement operation is
applied to the file offset within that stream. It is an error if the operand evaluates to anything else.

4.5.4.5 Bitslice operator

A postfix expression followed by the . operator and parentheses () indicates a bitslice, or a bitfield

access, within the postfix expression. Bitslices may be applied both to lvalues and to rvalues. It is an
error if the postfix expression does not evaluate to an arithmetic object.

 Page 59/172

LRM 2.7 © 2008-2021 Maia EDA

Syntax

bitslice :

 expr1.(expr2)

 expr1.(expr-msb : expr-lsb)

expr1 : expression

expr2 : expression

expr-msb : expression

expr-lsb : expression

Semantics

Bitslices are addressed using descending indexes. If two indexes are specified, they may be equal to
address a single bit. In this case, the bitslice may be expressed in a more compact form by specifying
only one index.

The LSB of any object always has an index of 0. The full set of requirements for the indexes can

therefore be expressed as follows:

(expr2 < expr1'size) && (expr2 >= 0)

(expr-msb < expr1'size) && (expr-msb >= expr-lsb)

expr-lsb >= 0

Indexes are evaluated and checked at runtime, and a runtime error is raised if the equalities above are
violated.

Some examples of bitslice usage are:

bit16 temp = 0xffff;

temp.(4:2) = 4; // set bits [4,3,2] to [1,0,0]; others unchanged

temp.(7:5) = 0xb; // set bits [4,3,2] to [0,1,1]

assert(temp == 0xff73);

bit16[3] R = {0, 0, 0xf000};

bit4 data;

R[2].(1) = 1; // set bit 1 of R[2]

data = R[2].(15:12); // set data to 15

assert(R[2] == 0xf002 && data == 15);

var16 test1 = 0xabcd;

var16 test2 = 0xbcde;

test1.(test1'size-1 : test1'size-4) = test2.(3:0);

assert(test1 == 0xebcd);

assert((test1 ^ test2).(15:8) == 0x57);

assert(test1.(0:0)'size == 16);

Example 45

The size of a bitslice expression is the size of the object being sliced (the postfix expression); it is not
the size implied by the slice indexes, which may change at runtime. The slice can be considered to be a
temporary object of the same size as the original object, with the required bits shifted to the bottom of
the temporary.

Size checking for bitslice expressions may be relaxed when writing to a DUT port in a drive statement;
see 3.1.4.

 Page 60/172

LRM 2.7 © 2008-2021 Maia EDA

4.5.4.6 Attribute operators

A postfix expression followed by the ' (or `) operator and an attribute returns an attribute, or

property, of the operand.

Syntax

 attribute-operator: one of

 size offset msb meta last last(expression)

Semantics

size The size attribute returns the size of the operand. If the operand evaluates to a data object, a
boolean, a structure, or an array, then the value of the attribute is the total size, in bits, of that
data object, boolean, structure, or array. If the operand evaluates to a mode 1 or a mode 2
stream, then the value of the attribute is the number of lines in the corresponding text file. It is
an error if the operand evaluates to anything else.

offset The offset attribute returns an offset within an object. If the operand evaluates to a member
within a structure, or is an array indexing expression, then the value of the attribute is the
offset of that member or element within the structure or array, measured in bits. If the operand
evaluates to a mode 1 stream, then the value of the attribute is the current line number within
that stream. It is an error if the operand evaluates to anything else.

The offset of the first object within its container always has the value 0.

msb The operand must evaluate to an ivar object. The return type of the msb attribute is var1 for a

var object, and bit1 otherwise; its value is the value of the most significant bit of that operand.

The msb is copied to carry out sign extension, even if it is a metavalue.

meta The operand may evaluate to anything except a stream or a stream member. The meta attribute

returns true if the operand is, or contains, a data object which has a metavalue (X or Z), and

false otherwise. If the object is an aggregate which contains a stream, then that stream

contributes a value of false to the overall determination.

last Returns a previous value of the operand.

The 'size and 'offset attributes return an int object.

The 'last attribute returns a previous value of a DUT input or IO, as it would have been sampled by

the DUT1. The operand must be declared as a DUT input or IO, and must appear in a clocked drive
declaration (8.3.2), to allow the sample clock to be identified. The expression sig.last(n) returns

the n'th previous value of signal sig, as it would have been sampled by the relevant clock at the DUT.

The expression sig.last(1)returns the value of sig that would have been sampled on the previous

clock edge, while sig.last(2)returns the value that would have been sampled on the preceding

edge, and so on. The expression sig.last is equivalent to sig.last(1). If the edge count (n) is

1 The 'last attribute may be used to avoid race conditions where one thread generates a DUT input, while another thread reads
the same input (either directly or from a DUT output which has a combinatorial path from the input). In this case, the writer and
reader threads will execute in an arbitrary order, and the reader may read the value before it has been written. This condition
can be avoided by instead reading the input as it would have been seen by the DUT at the previous clock edge.

 Page 61/172

LRM 2.7 © 2008-2021 Maia EDA

supplied, it must be greater than or equal to 1. The maximum value of n is compiler-determined, but

will be at least 4096. A run-time error will be raised if the edge count is out of range.

The value returned is maintained in a pipeline by the testbench itself, and is sampled on the relevant
sample clock, with the supplied or default setup time for the relevant signal. If the edge count for a
given signal is statically determinable then the compiler will generate the sample pipeline for that signal
with the size given by the maximum edge count in the source code. If the edge count cannot be
determined during compilation then the sample clock must instead be declared with a pipeline

specification, which gives the pipeline size required. If, for example, a 10-cycle sample history is
required for signal D, and the relevant clock is signal C, then C should be declared with

'create_clock C –pipeline 10'. In this case, a run-time error will be raised if, during execution

of the model, the edge count is found to be outside the range [1,10].

Examples

var24[2][3][4] x;

assert(

 (x'size == 576) &&

 (x[0]'size == 288) &&

 (x[0][0]'size == 96) &&

 (x[0][0][0]'size == 24));

Example 46

DUT {

 module reg4 // 4-bit reg with sync reset

 (input C, R,

 input [3:0] D,

 output [3:0] Q);

 create_clock C -pipeline 2; // 2-level sample pipe

 [C, R, D] -> [Q];

}

void main() {

 int level = 1;

 [.C, 1, 0] -> [0]; // reset

 [.C, 0, 1] -> [1]; // n+1 cycles required to prime n-cycle pipe

 for(bit4 i=2; i<10; i++) {

 [.C, 0, i] -> [i];

 assert((D'last(level) == i) && (D'last(level+1) == i-1));

 }

}

Example 47

 Page 62/172

LRM 2.7 © 2008-2021 Maia EDA

4.5.5 Unary operators

Syntax

unary-expression:

 postfix-expression

 unary-operator unary-expression

 (type-name) unary-expression

unary-operator: one of

 ++ -- + - ~ ! float+ float-

4.5.5.1 Prefix increment and decrement

The expressions ++E and --E are equivalent to (E+=1) and (E-=1), respectively. E must be an

lvalue.

If the operand evaluates to an int, bit or var object, then that object is incremented or

decremented using 2-state or 4-state integer arithmetic, in the same way as the postfix ++ and –-

operators (4.5.4.4). The result is the new value of the operand after the increment or decrement has
completed.

If the operand evaluates to a mode 1 stream, then the stream offset is incremented or decremented,
and the new state of the stream is returned. If the operand evaluates to a mode 2 stream, then ++E

writes the current line to E, increments the size of E, and returns the new state of E.

It is an error if the operand evaluates to anything else, or if the -- operator is applied to a mode 2

stream.

4.5.5.2 Unary arithmetic, bitwise, and logical operators

The operand of the unary + and unary - operators (and their floating-point equivalents) must evaluate

to an ivar object. The result has the type and size of the operand.

The unary addition operators return their operand unless that operand is a var which contains one or

more metavalues; in this case, the result has a value of all X, as if +E had been evaluated as (0+E).

The plain – operator carries out integer subtraction from 0 (with the exception noted in (4.6.1.2)),

while the floating-point equivalents carry out a floating-point subtraction from 0.0. An integer

subtraction from 0 is carried out using 2-state integer arithmetic if the operand is of type int or bit,

or 4-state integer arithmetic if the operand is of type var. The .F-, .F1-, .F2-, and .F3- operators

carry out a floating-point subtraction from 0.0, and return the value of the result.

For the floating-point unary operators, the operand is required to have the same size as the operator

(single, double, or extended-double precision).

The result of the complement operator ~ is the bitwise complement of its operand. The operand must

evaluate to a data object; the result has the same type and size as the operand. The complement
operation for 4-state objects is defined in (3.7.7.6).

 Page 63/172

LRM 2.7 © 2008-2021 Maia EDA

The result of the logical negation operator ! is of type bool. It has value false if the operand

evaluates true, and value true otherwise.

4.5.6 Cast operators

The cast operators convert a data object to or from a floating-point representation. When converting a

var to floating point, any metavalues bits are converted to 1.

Syntax

type-name: one of

 real1 real2 real3 int bitn varn

Examples

var8 i = 255; // i is 8`hff

real1 a = (real1)i; // a is 255.0F

real2 b = (real2)i; // a is 255.0 (64'h406f_e000_0000_0000)

real3 c = (real3)i; // a is 255.0L

int j = (int)b; // j is an integer, with value 8'hff

Example 48

Floating-point data may also be converted to a sized integer, with unused high bits discarded:

real2 b;

int d, e, f;

for(b = 254.0; b .F< 258.0; b = b .F+ 1.0) {

 d = (int) b;

 e = (bit8)b;

 f = (bit1)b;

 report("d: %d; e: %d; f: %d\n", d, e, f);

}

Example 49

This code produces the following output:

d: 254; e: 254; f: 0

d: 255; e: 255; f: 1

d: 256; e: 0; f: 0

d: 257; e: 1; f: 1

4.5.7 Multiplicative operators

The multiplicative operators implement multiplication, division, and remainder. Both operands are

required to have arithmetic type.

When using the floating-point versions of the operators, both operands, and the operator itself, are
required to have the same size (single, double, or extended-double precision), and the result has that
size.

Syntax

multiplicative-expression:

 unary-expression

 multiplicative-expression * unary-expression

 multiplicative-expression / unary-expression

 Page 64/172

LRM 2.7 © 2008-2021 Maia EDA

 multiplicative-expression % unary-expression

 multiplicative-expression float* unary-expression

 multiplicative-expression float/ unary-expression

Semantics

The *, /, and % operators, with no suffix, implement unsigned integer multiplication, rational division,

and remainder, respectively. The *#, /#, and %# operators implement the signed versions of these

operations. The unsigned and signed versions of the operators differ as follows:

1 If an operand requires extension, then the unsigned operators will zero-extend that operand,

while the signed operators will sign-extend that operand;

2 The unsigned operators view their operands as positive binary integers, and carry out an
unsigned operation; the signed operators view their operands as two's complement integers, and
carry out a signed operation.

The / and /# operators return the rational result truncated towards 0; the % and %# operators return

the remainder of the corresponding division (/ or /#) operation. This is often referred to as "truncating

division"1:

 7 /# 3 = 2 rem 1

-7 /# 3 = -2 rem –1

 7 /# -3 = -2 rem 1

-7 /# -3 = 2 rem –1

The relationship dividend = quotient * divisor + remainder holds for these operators.

4.5.8 Additive operators

The additive operators implement addition and subtraction. Both operands are required to have
arithmetic type.

When using the floating-point versions of the operators, both operands, and the operator itself, are
required to have the same size (single, double, or extended-double precision), and the result has that
size.

Syntax

additive-expression:

 multiplicative-expression

 additive-expression + multiplicative-expression

 additive-expression - multiplicative-expression

 additive-expression float+ multiplicative-expression

 additive-expression float- multiplicative-expression

Semantics

The + and – operators, with no suffix, implement unsigned integer addition and subtraction. The +#

and -# operators implement the signed version of the operation. If an operand requires extension,

1 % implements a remainder operation, and not a modulus operation. / and % have the same definition in Maia and C, although

% is sometimes referred to as the 'modulus' operator in C. % is equivalent to the MOD function in Fortran 90, and the rem

operator in Common Lisp, Ada, and VHDL.

 Page 65/172

LRM 2.7 © 2008-2021 Maia EDA

then the unsigned operators will zero-extend that operand, while the signed operators will sign-extend
that operand. The results of the unsigned and signed integer operations are otherwise identical.

4.5.9 Shift and rotate operators

The shift and rotate operators implement bitwise left and right shift, and bitwise left and right rotation.

Both operands are required to have arithmetic type.

Syntax

shift-expression:

 additive-expression

 shift-expression << additive-expression

 shift-expression >> additive-expression

 shift-expression .R<< additive-expression

 shift-expression .R>> additive-expression

Semantics

The <<, >>, .R<<, and .R>> operators, with no suffix, implement the unsigned versions of the

operation. The same operators with a # suffix implement the signed versions of the operations. The

unsigned and signed operations differ as follows:

1 If the left operand requires extension (4.4.1), then the unsigned operators will zero-extend that
operand, while the signed operators will sign-extend that operand;

2 The >> operator carries out a logical shift (by shifting in 0), while >># carries out an arithmetic

shift (by duplicating the sign bit). The remaining shift and rotate operators have the same
behaviour, irrespective of whether or not they have a # suffix.

The result of E1 << E2 is E1 left-shifted E2 bit positions; the vacated bits are filled with zeroes.

The result of E1 >> E2 is E1 right-shifted E2 bit positions. The vacated bits are filled with zeroes for

the unsigned operator, or with a copy of the top bit of E1 for the signed operator.

The result of E1 .R<< E2 is E1 left-rotated E2 bit positions. Rotation occurs within a word whose size

is given by the size of the operator (4.4.1). If E1 requires extension, then it will be zero-extended to

the operator size if the operator is unsigned, or sign-extended to the operator size if the operator is
signed, before the rotation is carried out.

The result of E1 .R>> E2 is E1 right-rotated E2 bit positions. Rotation occurs within a word whose

size is given by the size of the operator (4.4.1). If E1 requires extension, then it will be zero-extended

to the operator size if the operator is unsigned, or sign-extended to the operator size if the operator is
signed, before the rotation is carried out.

4.5.10 Relational operators

The relational operators implement integer and floating-point comparisons. Both operands are required

to have arithmetic type.

When using the floating-point versions of the operators, both operands, and the operator itself, are
required to have the same size (single, double, or extended-double precision).

 Page 66/172

LRM 2.7 © 2008-2021 Maia EDA

Syntax

relational-expression:

 shift-expression

 relational-expression < shift-expression

 relational-expression > shift-expression

 relational-expression <= shift-expression

 relational-expression >= shift-expression

 relational-expression float-compare shift-expression

Semantics

The operators return a result of type bool; the result is true if the specified relationship is true, and

false otherwise.

The > (greater than), < (less than), >= (greater than or equal), and <= (less than or equal) operators,

with no suffix, implement the unsigned integer comparisons. The >#, <#, >=#, and <=# operators

implement the signed integer comparisons. The unsigned and signed versions of the operators differ as
follows:

1 If an operand requires extension, then the unsigned operators will zero-extend that operand,
while the signed operators will sign-extend that operand;

2 The unsigned operators assume that their operands are unsigned binary, while the signed
operators assume that their operands are 2's complement. This affects the operator result, as
shown in the examples below.

If the operands contain any metavalues, all four relationships will be false (3.7.7.4). Otherwise, at least
one of the relationships will be true.

Examples

var4 r1, r2;

r1 = 0b1001; // 9 or -7

r2 = 0b0011; // 3

assert(r1 > 0); // 9 > 0

assert(r1 <# 0); // -7 < 0

assert(r1 > r2); // 9 > 3

assert(r1 <# r2); // -7 < 3

Example 50

The size of the relational operators is defined by the normal operator sizing rules (4.4.1), and

determines the number of bits of the operands which will be compared:

var4 r1 = 0b0110;

var4 r2 = 0b1000;

assert(r1 >$3 r2); // 6 > 0

assert(r1 <$4 r2); // 6 < 8

Example 51

4.5.11 Equality operators

The equality operators determine whether or not their operands have the same value. One of the
following 3 conditions must hold:

 Page 67/172

LRM 2.7 © 2008-2021 Maia EDA

1. both operands must be of the same type, where that type is int, var, kmap, or bool; or

2. both operands must be assignment-compatible structures (3.7.10.2); or

3. both operands must be assignment-compatible arrays (3.7.12.4).

The equality operators carry out a bitwise comparison, and so may be used for both integer and
floating-point comparisons.

Syntax

equality-expression:

 relational-expression

 equality-expression == relational-expression

 equality-expression != relational-expression

Semantics

The equality operators are analogous to the relational operators, but have a lower precedence, and
may be used to test K-maps, booleans, structures and arrays for equality. They return a result of type
bool; the result is true if the specified relationship is true, and false otherwise.

If the operands contain any metavalues, then those metavalues are included in the test (3.7.7.5). For
any pair of operands, exactly one of the relationships is true.

4.5.12 Bitwise AND operator

The & operator returns the bitwise AND of the two operands, as defined in (3.7.7.6). Both operands are

required to have data type.

Syntax

AND-expression:

 equality-expression

 AND-expression & equality-expression

4.5.13 Bitwise exclusive OR operator

The ^ operator returns the bitwise exclusive-OR of the two operands, as defined in (3.7.7.6). Both

operands are required to have data type.

Syntax

exclusive-OR-expression:

 AND-expression

 exclusive-OR-expression ^ AND-expression

4.5.14 Bitwise inclusive OR operator

The | operator returns the bitwise inclusive-OR of the two operands, as defined in (3.7.7.6). Both

operands are required to have data type.

Syntax

inclusive-OR-expression:

 exclusive-OR-expression

 Page 68/172

LRM 2.7 © 2008-2021 Maia EDA

 inclusive-OR-expression | exclusive-OR-expression

4.5.15 Logical AND operator

Both operands are required to be boolean. An operand of an arithmetic type is considered to be

boolean; see (3.7.4.2).

Syntax

logical-AND-expression:

 inclusive-OR-expression

 logical-AND-expression && inclusive-OR-expression

Semantics

The && operator return a result of type bool. E1 && E2 yields true if both E1 and E2 are true, and

false otherwise. E2 is not evaluated if E1 is false.

4.5.16 Logical OR operator

Both operands are required to be boolean. An operand of an arithmetic type is considered to be
boolean; see (3.7.4.2).

Syntax

logical-OR-expression:

 logical-AND-expression

 logical-OR-expression || logical-AND-expression

Semantics

The || operator return a result of type bool. E1 || E2 yields true if either E1 or E2 is true, and

false otherwise. E2 is not evaluated if E1 is true.

4.5.17 Conditional operator

The first operand is required to be boolean. An operand of an arithmetic type is considered to be
boolean; see (3.7.4.2). The second and third operands may be of any type, but must be assignment-
compatible.

Syntax

conditional-expression:

 logical-OR-expression

 logical-OR-expression ? expression : conditional-expression

Semantics

For the expression E1?E2:E3, E1 is evaluated first. E2 is evaluated only if E1 is true; E3 is evaluated

only if E1 is false. The result has the value of whichever of E2 or E3 was evaluated.

If E2 and E3 are of an arithmetic type, and one or more of them is of type var, then the result is of

type var; otherwise, the result is of type int. E2 and E3 must otherwise be of the same type, and the

result is of that type.

 Page 69/172

LRM 2.7 © 2008-2021 Maia EDA

4.5.18 Assignment operators

The assignment operators write a source location (an rvalue) to a destination location (an lvalue). The

left operand must be an lvalue. The left and right operands must be assignment-compatible.

Syntax

constant-assignment-expression :

 assignment-expression

assignment-expression :

 conditional-expression

 unary-expression assignment_operator assignment-expression

assignment_operator: one of

 = *= /= %= += -= <<= >>= .R<<= .R>>= &= ^= |=

Semantics

An assignment expression has the value of the left operand after the assignment, but is not an lvalue.
The type of the expression is the type of the left operand.

A constant-assignment-expression must have a known value during compilation.

An assignment is a compound assignment if it is of the form op=; it is otherwise a simple assignment.

The compound assignment E1 op= E2 is equivalent to E1 = E1 op (E2).

A simple assignment may optionally be sized or signed, or both. A size modifier specifies the number of
bits which will be copied from the source location, while the absence or presence of a # modifier

specifies whether these bits should be zero-extended or sign-extended, respectively. The compound
assignments, however, may not be signed or sized, because of the potential confusion over whether
the modifiers refer to the base operator, or to the assignment.

An assignment is evaluated by following this procedure:

1 the operation size (4.4.1) is first determined. For assignment, the operation size is the size of the
assignment operator, if it is explicitly sized, and is otherwise the size of the source operand.

2 If the operation size is less than the source size, the source data is truncated to the operation
size. Otherwise, if the operation size is greater than the source size, the source data is zero-
extended to the operation size for an unsigned assignment (=), or sign-extended to the operation

size for a signed assignment (=#).

3 The resized source data is then written to the destination. If the resized data is wider than the
destination, it is truncated to the destination size; if it is narrower than the destination, it is zero-
extended to the destination size for an unsigned assignment, or sign-extended to the destination
size for a signed assignment. The entire destination is always over-written.

The bitslice operator (4.5.4.5) should be used if it is necessary to leave some bits of the destination
unmodified.

The assignment operator is best viewed as a hardware logic unit, which contains, and controls writes
to, a memory location. The unit has a fixed-size input bus, where the size of the bus is given by the
operation size. The input to the logic unit is found by truncating, or extending, the operand to the size

 Page 70/172

LRM 2.7 © 2008-2021 Maia EDA

of the input bus. The unit always overwrites the entire memory location from the input bus, truncating
or extending the input bus as necessary.

This is illustrated in the diagram below, which shows a simple 2-input addition operation. In this
example, a 5-bit adder adds a 4-bit and a 3-bit register, both of which are zero-extended. The 5-bit
output is then sign-extended and written to a 6-bit register. The corresponding Maia code is:

var4 A;

var3 B;

var6 C;

C =# A +$5 B;

Example 52

The assignment in this example is unsized, but the operand is 5 bits, so the assignment operation size
is also 5 bits. The 5-bit result of the addition operation is then sign-extended to 6 bits when written to
the destination. The corresponding circuit is:

0

4
S

0

4
Q

0

4
P

0

0

0

5

B

A

C

Assignment

operator

Addition

operator

3

2

Figure 2: assignment input extension

Examples

var6 d;

var2 e = 2;

d =$4 6`h3f; assert(d == 6`h0f);

d =#$3 6`h0b; assert(d == 6`h03);

d =#$4 6`h0b; assert(d == 6`h3b);

d =$8 0xff; assert(d == 6`h3f); // note that no error is reported

d = 2`b10; assert(d == 6`h02);

d =# 2`b10; assert(d == 6`h3e);

d = e; assert(d == 6`h02);

d =# e; assert(d == 6`h3e);

int4 f = 4`b1001;

d = f; assert(d == 6`h09);

d =# f; assert(d == 6`h39);

d =$5 f; assert(d == 6`h09);

d =#$5 f; assert(d == 6`h39);

Example 53

 Page 71/172

LRM 2.7 © 2008-2021 Maia EDA

4.5.19 Comma operator

Syntax

constant-expression :

 expression

expression :

 assignment-expression

 expression , assignment-expression

Semantics

The left operand of a comma operator is evaluated as a void expression. The right operand is then
evaluated; the result has the type and value of the right operand.

A constant-expression must have a known value during compilation.

4.6 Floating-point operators and expressions

4.6.1 Introduction

Maia provides floating-point arithmetic, comparison, and cast operators. Each operator is preceded by

.F, and has a different version for IEC 60559 single-precision, double-precision, and extended double-

precision operands1. These three sizes are identified by the suffixes 1, 2, and 3, respectively. The three
addition operators, for example, are .F1+, .F2+, and .F3+.

These operators are essentially equivalent to hardware floating-point units. The .F1+ operator, for

example, takes two single-precision operands, and returns a single-precision result. It is the
programmer's responsibility to ensure that the operands are appropriate. There are no dedicated
floating-point data types, and any data object may be used as an operand to a floating-point operator,
as long as it is correctly sized. From a hardware perspective, this is analogous to allowing any 64-bit
memory location to be connected to a 64-bit floating-point adder; the result returned by the adder will
make little sense if the input memory locations do not actually contain floating-point data.

While this is the obvious way to handle hardware descriptions, it is not how most general-purpose
programming languages (or HDLs) operate. Consider, for example, this C program2:

#include <stdio.h>

int main(void) {

 double a = 2;

 double b = 3 * a;

 printf("3a is %3.1f (%lx)\n", b, *(long *)&b);

 return 0;

}

Example 54

1 Verilog supports only a 64-bit real type, which corresponds to double-precision on all supported systems. The Verilog code
generator therefore does not support float and double-extended precisions; see (A4.7.1).

2 This code assumes that 'long' and 'double' both contain the same number of bits; in general, it will only work on a 64-bit
machine. Note also that the actual bit pattern in a 'double' variable cannot simply be printed with an 'x' format; various casts are
required.

 Page 72/172

LRM 2.7 © 2008-2021 Maia EDA

The Maia equivalent1 is:

int main(void) {

 bit64 a = 2.0; // or declare as real2 (4.6.2)

 bit64 b = 3.0 .F* a;

 report("3a is %3.1f (%x)\n", b, b);

 return 0;

}

Example 55

both programs produce the same output:

3a is 6.0 (4018000000000000)

The C compiler has made a number of assumptions about the programmer's intentions. First, it has
assumed that the constant 2 in the assignment a=2 should actually be the bit pattern

0x4010000000000000, rather than the bit pattern 0x2. Secondly, for the assignment b = 3*a, the

compiler has assumed that (since one of the operands is known to be a double) the constant 3 is

actually the bit pattern 0x4008000000000000, and that a double-precision multiply is required, rather

than an integer multiply. These are useful assumptions for general-purpose programming problems, but
are arguably not appropriate for hardware description and testing.

Maia makes no assumptions about the programmer's intentions. The constants 2.0 and 3.0 must

therefore be explicitly entered as floating-point values, and not integer values; the multiplication
operator must also be specified as .F*, rather than simply as a general-purpose *. (3.0 * a), for

example, carries out an integer multiplication, while (3 .F* a) multiplies the floating-point bit pattern

in a by the integer 3. In this context, only (3.0 .F* a) produces the expected answer of 6.0.

The strict requirements that floating-point constants must contain a decimal (or hexadecimal) point,
and that floating-point operators should be used for floating-point expressions, are relaxed in two
specific cases (4.6.1.1 and 4.6.1.2). These relaxations simplify the handling of time values.

(A5) contains an example floating-point program, which calculates  to 15 decimal digits. The program

is not as concise as one written in a general-purpose language, but Maia is a domain-specific language,
and will not normally be used for general floating-point arithmetic problems.

4.6.1.1 Decimal point exception

Any constant which represents a time value, and which is not part of a larger expression, is interpreted

as floating-point, whether or not it contains a decimal point. This affects only wait statements and

times specified in a DUT section.

DUT {

 D1 -> posedge C = (2:-0.1) // tSU 2.0; tH -0.1

 ...

}

f() {

 wait 1; // waits 1.0 time units

 wait 1.0; // waits 1.0 time units

 wait 2.0 .F* 1.5; // waits 3.0 time units

1 This code assumes that a double contains 64 bits, which is true of all supported systems. 'real2' may be used rather than
'bit64', to avoid this assumption.

 Page 73/172

LRM 2.7 © 2008-2021 Maia EDA

 wait 2 .F* 1.5; // ERROR: '2' is not floating-point in this context

}

Example 56

4.6.1.2 Floating operator exception

The integer unary plus and minus operators are interpreted as floating-point unary plus and minus
when they precede a constant which represents a time value:

DUT {

 D1 -> posedge C = (2.1:-0.1) // integer unary minus may be used instead of...

 D2 -> posedge C = (2.1:.F-0.1) // verbose and potentially confusing

 D3 -> posedge C = (2.1:+0.1) // integer unary plus may be used instead of...

 D4 -> posedge C = (2.1:.F+0.1) // verbose and potentially confusing

 ...

}

Example 57

4.6.2 Declarations

Maia has no floating-point data types, but any objects which are intended to hold float data must be
correctly sized for that data. On all currently-supported systems, single-precision data is 32-bit, and
double-precision data is 64-bit. However, extended double-precision may be 64-bit, 80-bit, or 128-bit.

The real1, real2, and real3 keywords are provided to avoid potential sizing problems; these are

correctly sized by the compiler for the underlying types. When used in a declaration, these keywords
are simply syntactic sugar for a correctly-sized variable:

real1 a; // equivalent to 'bit32 a' on most systems

real2 b; // equivalent to 'bit64 b' on most systems

real3 c; // equivalent to 'bit64 c', 'bit80 c', or 'bit128 c' on most systems

report("real2 is %d bits\n", b'size);

Example 58

Note that these declarations do not flag to the compiler that a floating-point value is stored in a, b, or

c; the compiler has no interest in the contents of a data object. It is the programmer's responsibility to

track the meaning of any bit pattern in an object.

4.6.3 Operators

Table 18, Table 19, and Table 20 below list the floating-point arithmetic operators. These operators
have the same precedence and associativity as the corresponding integer arithmetic operators. The
binary arithmetic operators take two operands of the same size, and return a result of that size; the
comparison operators take two operands of the same size, and return a boolean result. An error will be
reported if the operands of any of these operators are incorrectly sized.

The operators have alternative textual names, which are listed in the tables below. If the size numeral

is omitted, it is assumed to be 2, for double-precision.

The compound assignment operators are not defined for floating-point data; the += operator, for

example, carries out an integer addition.

 Page 74/172

LRM 2.7 © 2008-2021 Maia EDA

Floating-point data may be converted to a different precision, or to and from integer data using the

cast operators; see (4.5.6).

Syntax

float+: one of

 .F1+ .F2+ .F3+ .F1ADD .F2ADD .F3ADD .F+ .FADD

float-: one of

 .F1- .F2- .F3- .F1SUB .F2SUB .F3SUB .F- .FSUB

float*: one of

 .F1* .F2* .F3* .F1MUL .F2MUL .F3MUL .F* .FMUL

float/: one of

 .F1/ .F2/ .F3/ .F1DIV .F2DIV .F3DIV .F/ .FDIV

float-compare: one of

 .F1< .F2< .F3< .F1LT .F2LT .F3LT .F< .FLT

 .F1> .F2> .F3> .F1GT .F2GT .F3GT .F> .FGT

 .F1<= .F2<= .F3<= .F1LE .F2LE .F3LE .F<= .FLE

 .F1>= .F2>= .F3>= .F1GE .F2GE .F3GE .F>= .FGE

Single precision Form 1 Form 2

Addition, unary + .F1+ .F1ADD

Subtraction, unary - .F1- .F1SUB

Multiplication .F1* .F1MUL

Division .F1/ .F1DIV

Less than .F1< .F1LT

Greater than .F1> .F1GT

Less than or equal .F1<= .F1LE

Greater than or equal .F1>= .F1GE

Table 18: single-precision real operators

Double precision Form 1 Form 2 Form 3 Form 4

Addition, unary + .F2+ .F2ADD .F+ .FADD

Subtraction, unary - .F2- .F2SUB .F- .FSUB

Multiplication .F2* .F2MUL .F* .FMUL

Division .F2/ .F2DIV .F/ .FDIV

Less than .F2< .F2LT .F< .FLT

Greater than .F2> .F2GT .F> .FGT

Less than or equal .F2<= .F2LE .F<= .FLE

Greater than or equal .F2>= .F2GE .F>= .FGE

Table 19: double-precision real operators

 Page 75/172

LRM 2.7 © 2008-2021 Maia EDA

Double extended Form 1 Form 2

Addition, unary + .F3+ .F3ADD

Subtraction, unary - .F3- .F3SUB

Multiplication .F3* .F3MUL

Division .F3/ .F3DIV

Less than .F3< .F3LT

Greater than .F3> .F3GT

Less than or equal .F3<= .F3LE

Greater than or equal .F3>= .F3GE

Table 20: double extended precision real operators

 Page 76/172

LRM 2.7 © 2008-2021 Maia EDA

5 DECLARATIONS

5.1 Introduction

Syntax

declaration :

 ivb-declaration ;

 struct-declaration ;

 stream-declaration ;

 kmap-declaration ;

A declaration specifies the interpretation given to an identifier. A declaration that also reserves storage
is a definition; a definition creates an object. A definition specifies the type of the object (3.7), and its
storage duration and initialisation (3.5).

If the value of _StrictChecking is greater than 0, there must be exactly one declaration for every

unique identifier1 in a given scope (3.3) and namespace (3.4).

If the value of _StrictChecking is 0, scalar variables inside a function do not require an explicit

declaration (3.1.1). These objects are created when they are first written to, and are implicitly declared
to be of type var, with automatic storage duration. No initialisation is defined for these objects, since

they are created only when explicitly written to.

The general form of the declarations of all objects is the same. However, the declaration of a structure
or stream may simply declare a new type, rather than an object, and these declarations are therefore
listed separately in (5.5) and (5.6). The initialiser for a K-map has a unique form, and K-map
declarations are therefore listed separately in (5.7).

5.2 Array dimensionality

Syntax

array-dimensions :

 array-dimensionsA

 array-dimensionsB

array-dimensionsA :

 dimensionA

 array-dimensionsA dimensionA

dimensionA :

 [constant-assignment-expressionopt]

array-dimensionsB :

 [commaopt constant-expressionopt]

When declaring an array (3.7.12), the dimensionality may be specified as part of the type, or following
the object name, or both; see (3.7.12.2).

1 The declaration for an identifier which is a (non-foreign) function name occurs as part of the function definition.

 Page 77/172

LRM 2.7 © 2008-2021 Maia EDA

The dimensionality may further be specified in two different forms. In the first form (array-

dimensionA) the dimensionality is specified as a list, with each dimension in its own [] brackets. In

the second form (array-dimensionB) (3.7.12.3), the dimensionality is specified as a comma-

separated list in a single pair of [] brackets.

When declaring an array, the first dimension expression may be omitted if it can be found from an
initialiser list:

int[] c = {0, 1, 2, 3, 4, 5}; // c is int[6]

int[][2] d = {{0,1}, {2,3}, {4,5}}; // d is int[3][2]

int[,2] e = {{0,1}, {2,3}, {4,5}}; // e is int[3,2]

int[,3,4] f; // ERROR: no initialiser

Example 59

It is an error if any dimension expression other than the first is omitted.

5.3 Initialisation

Syntax

init-assignment :

 = initialiser

initialiser :

 assignment-expression

 { }

 { initialiser-list commaopt }

initialiser-list :

 initialiser

 initialiser-list , initialiser

comma : ,

The initialisers for all objects (except K-maps; see (5.7)) have the same form, which is given by init-
assignment.

An initialiser specifies the initial value of an object. If an object (or any sub-object within an aggregate)
has no initialiser, then that object or sub-object is given a default initial value (3.6).

All the expressions in an initialiser for an object which has static storage duration (3.5) must be

constant expressions.

The initialiser for a stream is always assigned automatically; if an explicit initialiser is given for a stream
(or a stream in an aggregate) then that initialiser is ignored.

The initialiser for a scalar object must be a single expression, optionally enclosed in braces. The
initialiser for a single K-map may also optionally be enclosed in braces.

The initialiser for a structure or array which has automatic storage duration must be a single expression
that is an assignment-compatible aggregate (3.7.10.2 and 3.7.12.4), or an aggregate initialiser, as
discussed below.

 Page 78/172

LRM 2.7 © 2008-2021 Maia EDA

An aggregate initialiser is a brace-enclosed list of initialisers for the elements of the aggregate. The
aggregate object is initialised in order, by assigning successive expressions from the initialiser list to
successive element in the aggregate. Arrays are initialised in increasing subscript order (with the
rightmost subscript cycling fastest), and structures are initialised in member declaration order.

 If an aggregate contains sub-aggregates, then the initialiser list may omit initialisation of a sub-
aggregate (by leaving the corresponding initialiser expression blank), or may specify a sub-aggregate
initialiser in braces. Initialisation therefore occurs recursively down through any braces in the initialiser.
An array of rank n therefore requires n brace levels for complete initialisation, if the array elements are
scalar objects.

If the initialiser for an aggregate expires before the aggregate is completely initialised, then the
remaining members of the aggregate are given default initialisations (3.6).

Examples

If aggregate sub-objects are to be initialised, the braces must be fully specified1:

1 struct x {

2 int a, b;

3 };

4

5 int main(void) {

6 int c[6] = {0, 1, 2, 3, 4, 5}; // Ok

7

8 struct x d[6] = {0,1, 2,3, 4,5, 6,7, 8,9, 10,11}; // ERROR

9 struct x e[6] = {{0,1}, {2,3}, {4,5}, {6,7}, {8,9}, {10,11}}; // Ok

10

11 int f[2][3] = {0, 1, 2, 3, 4, 5}; // ERROR

12 int g[2][3] = {{0, 1, 2}, {3, 4, 5}}; // Ok

13

14 struct x h[2][3] = {{0,1}, {2,3}, {4,5}, {6,7}, {8,9}, {10,11}}; // ERROR

15 struct x i[2][3] = {{0,1, 2,3, 4,5}, {6,7, 8,9, 10,11}}; // ERROR

16 struct x j[2][3] = {{{0,1}, {2,3}, {4,5}}, {{6,7}, {8,9}, {10,11}}}; // Ok

17 return 0;

18 }

Example 60

The initialisers for objects with static storage duration (external and static objects) must be constant
expressions:

int foo(void) { return 41; }

void bar() {

 static struct s1 {

 int x, y;

 } a = {foo(), 42}; // error: initialiser must be constant

 struct s1 b = {foo(), 42}; // Ok

}

Example 61

1 Aggregate initialisation is, in practice, essentially identical to aggregate initialisation in C, except that conditions which are
generally flagged as warnings in C compilers (such as misaligned braces) are reported as errors in Maia. For this example, gcc
warns about missing braces on lines 8, 11, 14, and 15, while g++ warns about missing braces on lines 8, 11, and 15, and
reports an error on line 14. Maia reports errors for all of lines 8, 11, 14, and 15.

 Page 79/172

LRM 2.7 © 2008-2021 Maia EDA

5.4 int, bit, var, and bool

Syntax

ivb-declaration :

 storage-classopt typespec-ivb object-list

storage-class :

 static

typespec-ivb :

 typemark-ivb array-dimensionsopt

typemark-ivb : one of

 int bitn ubit varn uvar bool

object-list :

 object-item

 object-list , object-item

object-item :

 identifier array-dimensionsopt init-assignmentopt

 & identifier array-dimensionsopt = identifier

An ivb-declaration declares an object of a boolean or arithmetic type, or an array of these objects, for
the first form of object-item. The second form instead declares a reference to such an object or array
of objects; see (5.8).

5.5 struct

Syntax

struct-declaration :

 struct-named-instance

 struct-tdecl

 struct-tdecl-with-objects

struct-named-instance :

 storage-classopt typespec-struct object-list

typespec-struct :

 struct identifier array-dimensionsopt

struct-tdecl :

 struct { declaration-listopt }

 struct identifier { declaration-listopt }

declaration-list :

 declaration

 declaration-list declaration

struct-tdecl-with-objects :

 storage-classopt struct-tdecl array-dimensionsopt object-list

 Page 80/172

LRM 2.7 © 2008-2021 Maia EDA

A struct-tdecl declares a new structure (3.7.10) type. A structure is an aggregate type, and consists of
a sequence of members, each of which may itself be of an arbitrary type. A structure may not,
however, contain an instance of itself.

If object-list is present, the declaration declares either an object or an array of objects, or a reference
to such an object or array, according to the form of object-item.

5.6 stream

Syntax

stream-declaration :

 stream-named-instance

 stream-tdecl

 stream-tdecl-with-objects

stream-named-instance :

 storage-classopt typespec-stream object-list

typespec-stream :

 stream identifier array-dimensionsopt

stream-tdecl :

 stream { stream-defn-listopt }

 stream identifier { stream-defn-listopt }

stream-defn-list :

 stream-defn

 stream-defn-list stream-defn

stream-defn :

 mode constant-expression semicolonopt

 file string semicolonopt

 format string name-listopt semicolonopt

name-list :

 identifier

 name-list , identifier

stream-tdecl-with-objects :

 storage-classopt stream-tdecl array-dimensionsopt object-list

A stream-tdecl declares a new stream (3.7.11) type. struct and stream declarations have the

same form, except that a stream declaration contains the attributes of a named file, rather than a

collection of members.

All three attributes (mode, file, and format) must be present in a stream declaration, and may occur

in any order.

If object-list is present, the declaration declares either an object or an array of objects, or a reference

to such an object or array, according to the form of object-item.

 Page 81/172

LRM 2.7 © 2008-2021 Maia EDA

5.7 kmap

Syntax

kmap-declaration :

 storage-classopt typespec-kmap kmap-object-list

typespec-kmap :

 kmap array-dimensionsopt

kmap-object-list :

 kmap-object-item

 kmap-object-list , kmap-object-item

kmap-object-item :

 identifier array-dimensionsopt kmap-initialiseropt

 & identifier array-dimensionsopt = identifier

kmap-initialiser :

 = kmap-init

kmap-init :

 kmap-const-list

 { }

 { kmap-init-list commaopt }

kmap-const-list :

 kmap-constant

 kmap-const-list kmap-constant

kmap-constant

 constant

 kmap-const

kmap-const : one of

 x X z Z

kmap-init-list :

 kmap-init

 kmap-init-list , kmap-init

The first form of kmap-object-item declares a kmap object (3.7.8), or an array of such objects. The
second form instead declares a reference to such an object or array of objects; see (5.8).

A kmap initialiser is composed of a list of constants, rather than assignment expressions, and so has
the form kmap-initialiser (rather than init-assignment). A kmap declaration otherwise has the same
form as the declaration of an object of any other type.

For the purposes of initialisation, a kmap is regarded as a scalar object. The initialiser for this scalar is a
kmap-const-list, which is a whitespace-separated list of constants or the characters x, X, z, or Z. Any

constants in the list must have one of the values 0 or 1.

 Page 82/172

LRM 2.7 © 2008-2021 Maia EDA

5.8 References

A reference is an alternative name for an object. A reference is not itself an object; it is simply an alias
for an existing object. Any operation which is applied to a reference is carried out on the underlying
object, rather than on the reference itself. References may be used to implement pass-by-reference
semantics, or simply to create a more convenient name for an object.

References may only be created for a complete object. It is not possible to create a reference to a
bitfield of an object, or to a structure or stream field, or to elements within an array. However,
references may be created for an entire structure, stream, or array object. A given object has a primary
name, which is the name it was given in its declaration, and may have any number of additional
names, or aliases.

A reference is introduced with the & character. The notation &X denotes X as a reference to an object.

A reference must be bound to an existing object. This binding is carried out in one of the two forms
shown below.

5.8.1 Reference initialisation (1)

When declaring the reference, it must bound with an assignment to the name (primary or aliased) of an
existing object:

int i = 42; // an object with primary name i

int j = 43; // an object with primary name j

int &k = i; // k is an alias for i

int &l = k, &m = j; // l is another alias for i; m is an alias for j

k = 44;

report("%d %d %d %d %d\n", i, j, k, l, m); // prints '44 43 44 44 43'

Example 62

The initialisation is not an assignment operation; it simply identifies the object to be bound to the
reference. Note that:

1 The object that is bound to must be visible in the scope of the declaration

2 The type of the reference must be exactly the same as the type of the primary object

 Page 83/172

LRM 2.7 © 2008-2021 Maia EDA

5.8.2 Reference initialisation (2)

A function formal parameter may be declared as a reference and does not require explicit initialisation.

The formal is bound to any actuals at run time:

void fn1(int &a) { // pass by reference

 a += 5;

 fn2(a);

}

void fn2(int &b) { // pass by reference

 b += 5;

}

void main() {

 int i = 42;

 int j = 43;

 int k = 44;

 int &x = k;

 fn1(i); // fn1/2 assign to object i

 fn1(j); // fn1/2 assign to object j

 fn1(x); // fn1/2 assign to object k

 report("%d %d %d %d\n", i, j, k, x); // prints '52 53 54 54'

}

Example 63

The type of the reference parameter must again exactly match the type of the primary object. Section
(7.3) discusses the difference between call-by-value and call-by-reference semantics.

 Page 84/172

LRM 2.7 © 2008-2021 Maia EDA

6 STATEMENTS

6.1 Introduction

Syntax

statement :

 statementA

 statementB

statementA :

 compound-statement

 selection-statement

 iteration-statement

 jump-statement

 trigger-statement

 wait-statement

 exec-statement

 exit-statement

 assert-statement

 report-statement

 label : statementA

statementB :

 expression-statement

 drive-statement

 label : statementB

label : identifier

A statement specifies an action to be performed. Except where indicated otherwise, statements are
executed in sequence.

Statements may optionally be preceded by an identifier and a ':', where the identifier labels the

statement. The default label has special significance, and may not be used outside a switch

statement. Labels may be used to disambiguate drive statements (6.8), but otherwise have no
significance1.

Statements are divided into two groups (statementA and statementB). This division has no

significance, other than to define the statements which may follow an if statement or a while

statement, when the controlling expression for that if or while is not enclosed in parentheses. If the

parentheses are omitted, the following statement must be a statementA; if they are included, the

following statement may be any statement.

Simulation time may be advanced only by executing a wait statement, or a drive statement; all other
statements execute in zero time. Expression evaluation order is completely defined, and any expression
which includes time-consuming function calls always has a defined result.

1 C allows a label to be the destination of a goto statement.

 Page 85/172

LRM 2.7 © 2008-2021 Maia EDA

6.2 Compound statement

Syntax

compound-statement :

 { block-item-listopt }

block-item-list :

 block-item

 block-item-list block-item

block-item :

 declaration

 statement

A compound statement groups a set of declarations and statements together as a single syntactic unit.
For values of _StrictChecking above 0, the opening { introduces a new scope level.

6.3 Expression and null statements

Syntax

expression-statement :

 expressionopt ;

An expression statement is evaluated as a void expression for its side-effects.

A null statement (consisting of just a ;) performs no operations.

6.4 Selection statements

The selection statements select between groups of statements depending on the value of a controlling

expression.

Syntax

selection-statement :

 if expression statementA

 if expression statementA else statement

 if (expression) statement

 if (expression) statement else statement

 switch expression { switch-bodyopt }

switch-body :

 labelled-statement-switch

 switch-body labelled-statement-switch

labelled-statement-switch :

 case constant-expression : block-item-list

 default : block-item-list

 Page 86/172

LRM 2.7 © 2008-2021 Maia EDA

Semantics

Parentheses may optionally be placed around the controlling expression if desired1. However, there is a
potential parsing ambiguity for the if and if-else statements if the parentheses are omitted, and

the associated statement is therefore required to be statementA (a subset of statement) in this

case. In other words, if the parentheses are omitted, the associated statement may not be a single
expression statement, or a single drive statement.

6.4.1 The if statement

The controlling expression must be of boolean type.

If the controlling expression evaluates true, the associated statement is executed; if it evaluates false,
the associated statement is not executed.

6.4.2 The if-else statement

The controlling expression must be of boolean type.

If the controlling expression evaluates true, the first statement is executed; if it evaluates false, the
second statement is instead executed.

The else clause is associated with the nearest lexically preceding if.

6.4.3 The switch statement

The controlling expression must be of arithmetic type.

There may be at most one default label in the switch statement. A case label expression must be a

constant expression; the values of the case label expressions must all be unique within a given switch

statement2.

If the value of the controlling expression matches one of the case label expressions, control will jump to
the statement following the matched case label. Otherwise, if there is a default label, control jumps to
the labelled statement. In both cases, execution will continue until a break statement is encountered,
or until the end of the switch statement otherwise.

If there is no default label, and the value of the controlling expression does not match the value of

any of the case labels, then no part of the switch body is executed.

The controlling expression and the case labels may be of different types if one is of type var, and the

other is of type int or bit. In this case, the case label expression is converted to the type of the

controlling expression, as if by assignment, before comparison with the value of the controlling
expression.

1 C requires parentheses here.

2 If a switch statement itself includes one or more other switch statements, then those switch statements may themselves

have default labels, and may have case label expressions which duplicate the expressions in the first switch statement.

 Page 87/172

LRM 2.7 © 2008-2021 Maia EDA

6.5 Iteration statements

The while, do, and for iteration statements execute a loop under the control of a controlling

expression. The for all statement executes a loop for all values of a control object.

Syntax

iteration-statement :

 while expression loop-bodyA

 while (expression) loop-body

 do loop-body while expression ;

 for (expressionopt ; expressionopt ; expressionopt) loop-body

 for all identifier loop-body

loop-bodyA:

 statementA

loop-body:

 statement

Semantics

The controlling expression of the while, do, and for iteration statements must be of boolean type.

These statements execute the loop body (loop-bodyA or loop-body) while the controlling

expression is true; the iteration statement is terminated when the controlling expression evaluates
false.

The for all iteration statement executes the loop body for all values of the control object,

incrementing sequentially from 0.

6.5.1 The while statement

The controlling expression is evaluated before each execution of the loop body.

Parentheses may optionally be placed around the controlling expression if desired1. However, there is a
potential parsing ambiguity if the parentheses are omitted, and the loop body is therefore required to
be statementA (a subset of statement) in this case. In other words, if the parentheses are omitted,

the loop body may not be a single expression statement, or a single drive statement.

6.5.2 The do statement

The controlling expression is evaluated before each execution of the loop body. Parentheses may
optionally be placed around the controlling expression if desired41.

6.5.3 The for statement

The statement for(E1; E2; E3) loop-body is evaluated as follows:

1 C requires parentheses here.

 Page 88/172

LRM 2.7 © 2008-2021 Maia EDA

1 If E1 is present, it is evaluated once, as a void expression. E1 is generally a loop initialisation

operation.

2 E2 is then evaluated; it is the controlling expression. If E2 is omitted, it is given the value true.

If E2 evaluates false, execution continues at the statement after the for statement; if it

evaluates true, the loop body is executed (step 3).

3 The loop body is executed; if E3 is present, it is then evaluated as a void expression. Execution

then resumes at step 2.

A continue statement in the loop body branches to a point just before E3; in other words, E3 is

always evaluated after a continue.

6.5.4 The for all statement

The statement for all identifier loop-body executes the associated loop body for all values

of the identifier, starting at 0. The identifier must name an arithmetic object, or a mode 1 stream. If

the identifier names an arithmetic object, the for all statement is equivalent to:

 identifier = 0;

 do {

 loop-body

 } while(++identifier != 0);

Example 64

The for all statement is primarily useful for iterating over all values of a 'small' variable1, and avoids

the complexity of handling the wrap-around of the variable, and the use of signed or unsigned
comparisons in the equivalent loop control expression.

If the identifier names a mode 1 stream, the for all statement is equivalent to:

 identifier = 0;

 do {

 loop-body

 } while((++identifier)'offset != 0);

Example 65

The for all statement may therefore be used to iterate over all lines of a mode 1 stream

(3.7.11.1.7).

6.6 Jump statements

A jump statement causes an unconditional jump.

Syntax

jump_statement :

 continue constant-expressionopt ;

 break constant-expressionopt ;

1 This might be useful, for example, if it is necessary to apply all values of an 8-bit variable to a DUT. Care should be taken not
to use a 'large' variable as the loop control variable; the number of loop iterations is 2identifier’size.

 Page 89/172

LRM 2.7 © 2008-2021 Maia EDA

 return expressionopt ;

6.6.1 The continue statement

The continue statement causes a jump to the loop-continuation portion of an enclosing iteration

statement. The continue has an associated level, which is given by the optional constant expression,

and which specifies which enclosing iteration statement should be continued.

If the level expression is omitted, it defaults to 1. A one-level continue jumps to the end of the loop

body of the closest enclosing iteration statement1. continue 2 jumps to the end of the loop body of

the next enclosing iteration statement, and so on. It is an error if the continue level is less than 1, or

greater than the number of enclosing iteration statements2.

Examples

The "loop-continuation portion" of an iteration statement is an implicit null statement at the end of the

loop body. This null statement is jumped to by a continue:

while(a()) {

 if(b())

 continue; // jumps to label1

 c();

 label1: ;

}

do {

 if(b())

 continue; // jumps to label2

 c();

 label2: ;

} while(a());

for(;;) {

 if(b())

 continue; // jumps to label3

 c();

 label3: ;

}

for all x {

 if(b())

 continue; // jumps to label4

 c();

 label4: ;

}

Example 66

1 A continue which has no level specified therefore has the same behaviour as C's continue statement.

2 It is therefore an error if the continue statement does not appear inside an iteration statement.

 Page 90/172

LRM 2.7 © 2008-2021 Maia EDA

6.6.2 The break statement

The break statement causes termination of an enclosing switch or iteration statement. The break

has an associated level, which is given by the optional constant expression, and which specifies which
enclosing switch or iteration statement should be terminated.

If the level expression is omitted, it defaults to 1. A one-level break terminates the closest enclosing

switch or iteration statement1. break 2 terminates the next enclosing switch or iteration

statement, and so on. It is an error if the break level is less than 1, or greater than the number of

enclosing switch and iteration statements2.

Examples

This code shows an example of a multi-level continue, and a multi-level break:

for(;;) {

 while(true) {

 if(foo())

 continue; // equivalent to continue 1; jumps to label jumpA

 if(foo())

 continue 2; // jumps to label jumpB

 if(foo())

 break 2; // breaks 2 levels; jumps to label jumpC

 jumpA: ;

 }

 if(foo())

 break; // equivalent to break 1; jumps to label jumpC

 jumpB: ;

}

jumpC: ;

Example 67

6.6.3 The return statement

A return statement terminates execution of the current function and returns to the caller. Any

number of return statements may appear in a function.

The optional return expression may be used to return a value to the caller. The expression is returned
as if by assignment to a temporary object which has the declared type of the function; the value of the
function is the value of this temporary object. It is an error if a function which has been declared to be
of void type contains any return statements with an associated return expression.

If a function has a non-void type, and control is returned to the caller by reaching the terminating } or

by executing a return statement with no associated return expression, then the value returned to the

caller will be the current value of the predefined result variable. Every non-void function has an

implicit result variable, which has the same type as the function itself. The result variable is

default-initialised (3.6) when the function is entered.

1 A break which has no level specified therefore has the same behaviour as C's break statement.

2 It is therefore an error if the break statement does not appear inside a switch or iteration statement.

 Page 91/172

LRM 2.7 © 2008-2021 Maia EDA

Examples

int f1(void) {

 result = 2; // f1() returns 2

}

int f2(void) {

 result = 2;

 return 4; // f2() returns 4

}

int f3(void) {

 struct s1 res = f4();

 assert(res.a == 4'b0000 && res.b == 4'bxxxx);

 return; // f3 returns 0 (the default value of result, of type int)

}

struct s1 {

 int4 a;

 var4 b;

}

struct s1 f4(void) {}

Example 68

6.7 Trigger statement

Syntax

trigger-statement :

 trigger postfix-expression (argument-expression-listopt) trigger-conditionopt ;

trigger-condition :

 trigger-count expression

trigger-count : one of

 when

 when all

The trigger statement posts a trigger function (7.7) for later execution. The postfix-expression

must denote a trigger function; the () parentheses contain a possibly empty comma-separated list of

expressions. These expressions form the actual parameters to the trigger function; the number of
arguments must agree with the number of formal parameters to the function. The actual parameters
are sampled when the trigger statement is executed; the sampled values are stored, and are supplied
to the formal parameters, as if by assignment, when the trigger function starts execution.

The trigger function starts execution when the expression supplied in trigger-condition is

sampled true. This expression must be of boolean type, and may be arbitrary; however, it will normally
be some combination of values at the DUT outputs. The condition when all true can be used to

initiate the trigger function on every clock cycle. The condition is sampled and acted on as described in
(9.2.3) and (10.10).

If trigger-count is specified as when, the trigger function executes only once, when the trigger

condition is first sampled true. If trigger-count is specified as when all, the trigger condition

automatically re-arms when the trigger function completes execution; the condition is then checked on
subsequent sampling clocks. A run-time error is reported if the trigger condition again becomes true
while the function is running; it is not possible to run multiple instances of the same trigger function.

 Page 92/172

LRM 2.7 © 2008-2021 Maia EDA

6.8 Drive statement

Syntax

vfile-drive-statement :

 base-drive-statement

drive-statement :

 base-drive-statement

 triggered-drive-statement

base-drive-statement :

 [hdl-inputs]

 [hdl-inputs] -> pipe-levelopt [hdl-outputs]

triggered-drive-statement :

 -> [hdl-outputs]

pipe-level :

 constant

 identifier

 (expression)

hdl-inputs :

 hdl-expression-list

hdl-outputs :

 hdl-expression-list

hdl-expression-list :

 hdl-expression

 hdl-expression-list , hdl-expression

hdl-expression :

 assignment-expression

 drive-directiveopt

drive-directive : one of

 - .c .C .x .X .z .Z .r .R

The syntax of the base-drive-statement is shown only for procedural programs (drive-

statement), and not for testvector programs (vfile-drive-statement), for simplicity (1.1). For a

testvector program, an hdl-expression must be a constant-assignment-expression or a

directive, rather than an assignment-expression or a directive.

The optional pipe-level specifies the expected number of pipeline levels (9.2.4) on the hdl-

outputs; it defaults to 1 if it is omitted1. The level may be an arbitrary expression if required (and so

may change at runtime). If the level is not a constant or an identifier, it must be enclosed in
parentheses () to avoid parsing ambiguities.

A drive-directive (9.3) is a single character which specifies an action on an input, an output, or

both. An empty directive is a don't-care condition, and is equivalent to '-'.

The drive statement is described in (9).

1 In other words, hdl-inputs set up to a clock edge, and hdl-outputs are generated by the same clock edge.

 Page 93/172

LRM 2.7 © 2008-2021 Maia EDA

6.9 Wait statement

Syntax

wait-statement :

 wait expression ;

The wait statement causes the currently-executing function to pause execution for the time given by

the expression. The expression is interpreted as a floating-point number1, in the timescale units
specified in the DUT section (which default to nanoseconds).

wait statements may not be used in trigger functions.

6.10 Exec statement

Syntax

exec-statement :

 exec function-name (argument-expression-list) ;

function-name : identifier

The exec statement creates a new thread (10.5), and initiates execution of the named function in that

thread. The statement returns immediately (in zero simulation time), and the newly-created thread
starts execution immediately.

argument-expression-list must contain at least one actual parameter. The first actual must be the name

of an int object, which is passed by reference to the new thread function. The new Thread ID is

returned to the caller.

6.11 Exit statement

Syntax

exit-statement :

 exit expressionopt ;

The exit statement terminates program execution; the expression is an exit code. If main was

declared to return an int the exit code is required; otherwise, main must be declared to return void,

and an exit code must not be supplied.

The exit code is recorded in the simulation logfile; see Appendix A2 for details.

1 Even if it has no decimal point; see (4.6.1.1)

 Page 94/172

LRM 2.7 © 2008-2021 Maia EDA

6.12 Assert statement

Syntax

assert-statement :

 assert expression ;

 assert expression report-statement

The assert expression is required to be of boolean type. If the expression evaluates false, an error is
reported on stdout and in the log file; the error message includes the source file name and line number
of the failing assert statement.

The assert expression may optionally be followed by a report statement. If the report statement

is present, the report message is included as part of the assertion failure output.

The number of assertion failures which are required to terminate a program is set by a compiler switch;
see (A4.5).

6.13 Report statement

Syntax

report-statement :

 report printf-varargs ;

 report (printf-varargs) ;

printf-varargs :

 string

 string , pv-list

pv-list :

 pv-element

 pv-list , pv-element

pv-element :

 assignment-expression

 string

The report statement provides formatted output to the console (stdout). The first argument is a

format string, which specifies how subsequent arguments are converted for output. The number of
supplied arguments must match the number expected for the format.

The format is a character sequence, which is composed of zero or more ordinary characters (not %),

which are copied unmodified to stdout, and conversion specifications. The conversion specifications
result in the fetching of zero or more arguments, which are written to stdout.

report is broadly compatible with C's fprintf, with the exceptions noted in (6.13.3). However,

2021.4 relies on the Verilog simulator to generate output, and different simulators have widely different
support for formatted output. It is likely that there will be some deviation from this specification,
depending on which simulator is used (A4.7.2).

A conversion specification is introduced by the character %. After the %, the following appear, in

sequence:

 Page 95/172

LRM 2.7 © 2008-2021 Maia EDA

1. zero or more flags, in any order, which modify the meaning of the conversion specification.

The +, -, ' ' (space), #, and 0 flags are recognised, but are not implemented in 2021.4; a

warning is issued if these flags are detected.

2. An optional minimum field width. If the output has fewer characters than the field width, it is

padded with spaces on the left. The field width must be a decimal integer.

3. An optional precision that gives the minimum number of digits to appear for the d, i, b, o, u,

x, and X conversions, the number of digits to appear after the decimal point character for a,

A, e, E, and f conversions, the maximum number of significant digits for the g and G

conversions, or the maximum number of output characters for s conversion. The precision

takes the form of a period (.) followed by an optional decimal integer; if the integer is

omitted, it defaults to 0.

4. An optional length modifier that specifies the size of the argument.

5. A conversion specifier character that specifies the form of the output.

6.13.1 Length modifiers

Length modifiers are required only for arguments which should be interpreted as floating-point
numbers. The length modifiers and their meanings are (where a "real" conversion specifier is one of f,

e, E, g, G, a, or A):

F Specifies that a following real conversion specifier applies to a single-precision float

D Specifies that a following real conversion specifier applies to a double-precision float

L Specifies that a following real conversion specifier applies to an extended double-precision float

If the length modifier is omitted, and the following conversion specifier is a real conversion specifier,
then the length modifier defaults to D. The Verilog code generator does not support the F and L length

modifiers, and an error is reported if they are used.

6.13.2 Conversion specifiers

The conversion specifiers are listed below. The argument corresponding to the specifier must be an

arithmetic object, unless noted otherwise.

s The argument must be a string. If the precision is specified, no more than that many
characters are output.

t The time coded in the argument is output as an integer; the current time may be output
by using _timeNow as the argument.

T The time coded in the argument is output as a float; the current time may be output by
using _timeNow as the argument.

l The argument must be boolean; it is output as the string true, or the string false.

d,i The argument is assumed to be in 2's complement form, and is output as signed
decimal; a leading – sign is output if necessary. The precision specifies the minimum

 Page 96/172

LRM 2.7 © 2008-2021 Maia EDA

number of digits to output; if the argument can be specified in fewer digits, it is
expanded with leading zeros. The default precision is 1.

b,o,u,

x,X
The argument is output as unsigned binary (b), unsigned octal (o), unsigned decimal

(u), or unsigned hexadecimal (x and X). The letters abcdef are used for x conversion,

and ABCDEF for X conversion. The precision specifies the minimum number of digits to

output; if the argument can be specified in fewer digits, it is padded with leading zeros.
The default precision is 1.

f The argument is assumed to be floating-point, and is output in decimal in the style

[−]ddd.ddd, where the number of digits after the decimal point is equal to the precision

specification. The precision defaults to 6 if it not specified; if the precision is 0, no
decimal point character appears. If a decimal point character is output, at least one digit
will appear before it. The value is rounded to the appropriate number of digits.

An argument representing an infinity is output as either [-]inf or [-]infinity,

depending on the simulator. An argument representing a NaN is output as [-]nan or [-

]nan(n-char-sequence), depending on the simulator.

e,E The argument is assumed to be floating-point, and is output in decimal in the style
[−]d.ddd edd, where there is one digit (which is nonzero if the argument is nonzero)

before the decimal-point character. the number of digits after the decimal point is equal
to the precision specification. The precision defaults to 6 if it not specified; if the
precision is 0, no decimal point character appears. The value is rounded to the
appropriate number of digits.

The E conversion specifier outputs a number with E instead of e introducing the

exponent. The exponent always contains at least two digits, and only as many more
digits as necessary to represent the exponent. If the value is zero, the exponent is zero.

An argument representing an infinity or NaN is output in the same style as the f

conversion specifier.

g,G The argument is assumed to be floating-point, and is output in style f or e (or in style

f or E in the case of a G conversion specifier). The style used depends on the value

converted; style e (or E) is used only if the corresponding exponent is less than −4 or

greater than or equal to the precision.

The precision specifies the number of significant digits. If the precision is zero, it is taken
as 1. Trailing zeros are removed from the fractional portion of the result; a decimal-point
character appears only if it is followed by a digit.

An argument representing an infinity or NaN is output in the same style as the f

conversion specifier.

a,A The argument is assumed to be floating-point, and is output in the style [−]0xh.hhhh

pd. There is one hexadecimal digit (which is nonzero if the argument is a normalized

floating-point number and is otherwise unspecified) before the decimal-point character,
and the number of hexadecimal digits after it is equal to the precision. If the precision is
0, no decimal point character appears.

 Page 97/172

LRM 2.7 © 2008-2021 Maia EDA

The letters x, p, and abcdef are used for the a conversion, while the letters X, P, and

ABCDEF are used for the A conversion.

The exponent always contains at least one digit, and only as many more digits as
necessary to represent the decimal exponent. If the value is zero, the exponent is zero.

An argument representing an infinity or NaN is output in the same style as the f

conversion specifier.

c The argument is output as a character.

% A % character is output; no argument is consumed.

6.13.3 fprintf compatibility

The conversion specifications are modelled on the conversion specifications defined for the C fprintf

function1. However, report and fprintf differ in the following areas:

a) The flags are not implemented in 2021.4

b) Length modifiers are not required for arithmetic objects which are to be output as integers;
the fprintf hh, h, l, ll, j, z, t, and L length modifiers are therefore unused. The l and t

modifiers are reused as conversion specifiers; the remaining modifiers are reported as errors

c) The fprintf p and n conversion specifiers are not required

d) The t, T, l, and b conversion specifiers are added, to handle integer time, floating-point

time, logical, and binary output, respectively

e) The fprintf * field width, and * precision, are not supported.

1 ISO/IEC 9899:1999 (E), §7.19.6.1

 Page 98/172

LRM 2.7 © 2008-2021 Maia EDA

7 FUNCTIONS

7.1 Introduction

Maia supports user functions (7.5), trigger functions (7.7), and foreign functions (7.8). User functions
are conventional functions which are executed as part of the normal user-initiated sequential program
flow, while trigger functions are run automatically, in response to defined trigger conditions. Foreign
functions are foreign-language routines which may be called as part of the normal program flow. All
three function types may execute in either zero or non-zero simulation time.

User and foreign function calls are primary expressions; they may appear anywhere where an
expression may appear. User functions (of a non-void type) always have a value, whether or not they

explicitly return data. User functions cannot return object references, and so cannot be lvalues. A non-
void user function which does not return a value has the value of the result variable (3.6). Foreign

functions must be declared with a void return type, and so do not have a value.

Trigger functions are posted for later execution using trigger statements (6.7). A trigger statement
specifies a set of conditions (normally DUT outputs) which are examined on every controlling clock
edge, and the function, together with its actual parameters, which will be called when the condition is
found to be true. A return statement in a trigger function simply terminates execution of that function;
the function may not return data, and may not assign to result, and has no value.

User functions may be run in a new thread using exec statements (6.10). Any function initiated in this
way is referred to as a thread function (7.6). Thread functions are simply user functions which have
been initiated with an exec statement, but they have a number of restrictions which do not apply to
general user functions, and so are discussed separately here.

All function names are globally visible.

7.1.1 main

If a program includes any functions, then one of these functions must be a user function named main.

The main function is the program entry point. main must be declared to have either a void or int

return type if _StrictChecking is greater than 0 (3.1.3), and must have no parameters.

If main is declared to have an int return type, then the program return value is recorded in the

logfile; see (6.11) and Appendix A2.

7.2 Syntax

function-definition :

 user-function-definition

 thread-function-defintion

 trigger-function-definition

user-function-definition :

 user-function-typespecopt

 function-name (formal-listopt) { sf-block-item-listopt }

 Page 99/172

LRM 2.7 © 2008-2021 Maia EDA

user-function-typespec :

 typespec-ivb

 typespec-struct

 typespec-stream

 typespec-kmap

thread-function-definition :

 void function-name (formal-list) { sf-block-item-listopt }

trigger-function-definition :

 @ function-name (formal-listopt) { tf-block-item-listopt }

function-name : identifier

formal-list :

 void

 formal-item-list

formal-item-list :

 formal-item

 formal-item-list , formal-item

formal-item : formal-typespec &opt identifier array-dimensionsopt

formal-typespec : user-function-typespec

sf-block-item-list : block-item-list

tf-block-item-list : block-item-list

The user-function-typespec may be omitted if the _StrictChecking level is 0 (3.1.3). In this

case, the function return type is uvar. The formal-typespec may similarly be omitted if the

_StrictChecking level is 0.

sf-block-item-list and tf-block-item-list are both shown as block-item-list, for

simplicity. However, there are a number of differences between the statements which may be used in
user and trigger functions; see (7.7).

7.3 Parameter passing semantics

The mechanism by which a parameter is passed to a function is determined by the presence or absence
of an & (ampersand) character preceding the formal identifier. If no ampersand is present, the function

receives a copy of the current value of the argument ('call by value'). If an ampersand is present, the
function instead receives a reference to the argument ('call by reference'). This reference may be used
to modify the value of the caller's argument, as illustrated by the 'swap' functions in Example 69 below,
or to read the current value of the caller's argument.

When a stream object is passed to a function, the function receives a handle to that stream. Passing a
stream by value therefore has exactly the same effect as passing that stream by reference, and any use
of '&' is redundant.

 Page 100/172

LRM 2.7 © 2008-2021 Maia EDA

void main() {

 int i = 1;

 int j = 2;

 swap_val(i, j);

 report("i is %d; j is %d\n", i, j); // reports 'i is 1; j is 2'

 swap_ref(i, j);

 report("i is %d; j is %d\n", i, j); // reports 'i is 2; j is 1'

}

void swap_val(int a, int b) {

 int temp = b;

 b = a;

 a = temp;

}

void swap_ref(int& a, int& b) {

 int temp = b;

 b = a;

 a = temp;

}

Example 69

7.4 Function signatures

Function names may be overloaded, and are identified, or disambiguated, by the number of parameters
to the function. A function signature is made up of the name of the function, together with the number
of formal parameters, using the notation name{nparams}. All function signatures must be unique

within a program.

void main() {

 var a;

 ...

 test(); // call function test{0}

 trigger test(a) when DATA_READY; // post test{1} for later execution

}

test() { // this is test{0} (0 formal parameters)

 report("test called\n");

}

@test(x) { // this is test{1} (1 formal parameter)

 report("DATA_READY active; 'x' is %u\n", x);

}

Example 70

 Page 101/172

LRM 2.7 © 2008-2021 Maia EDA

7.5 User functions

A user function returns no value if it has a void type, or one value otherwise; it may not return a

reference. It may have zero or more input parameters. A user function with a non-void return type

returns a value either with a return statement, or by assigning to the predefined result variable. If

a function returns by using a return statement with no expression, or by reaching the terminating },

then the value returned will be the last value assigned to result. result is default-initialised (3.6)

when the function is entered, so all user functions have a defined default return value.

User functions do not need to be declared before use. The definition of a user function also serves as
its declaration.

Recursion is not supported in 2021.4 (A4.7.4).

7.6 Thread functions

A Thread function is any user function which is named as the target of an exec statement. If a

function name appears as the target of an exec, then it cannot be executed 'conventionally', by using

its name as part of an expression; it can only be executed as an exec target.

While user and thread functions are syntactically and semantically identical, there are a number of
usage restrictions for thread functions.

Thread functions do not return to the caller, and so must be declared with a void return type. There

must be at least one formal parameter, and the first formal must be a reference to an integer. When
the function starts execution, this parameter will contain the new thread ID. This thread ID is also
returned to the caller:

void main() {

 int tid;

 exec f1(tid);

 report("%t: started thread %d\n", _timeNow, tid); // "1 ns: started thread 1"

}

void f1(int& tid) {

 report("%t: in thread %d\n", _timeNow, tid); // "1 ns: in thread 1"

}

Example 71

7.7 Trigger functions

Trigger functions are essentially 'clocked' functions. They are automatically initiated when the run-time
detects a defined trigger condition (which is normally some combination of values at the DUT outputs)
at a clock edge. The clock itself must be generated elsewhere. Trigger functions use a special form of
drive statement (triggered-drive-statement). These drive statements have no inputs, since they are
responsible only for testing outputs in response to a clock edge:

 ->[out1, out2, ...outn]; // triggered drive statement: no inputs

 Page 102/172

LRM 2.7 © 2008-2021 Maia EDA

Trigger functions are syntactically and semantically identical to user functions, apart from the following

differences:

1 The name of a trigger function is preceded by an @ character in its definition

2 Trigger functions may only be posted for later execution via a trigger statement (6.7); they
cannot be 'called' in the conventional way. Trigger functions therefore have no value and
cannot be used in expressions. The parameters to a trigger function are sampled when the
function is posted, and not when the function eventually starts execution.

3 Trigger functions may not return a value; it is an error to use the result variable or to

return an expression

4 Trigger functions may not execute wait statements, and may not post trigger functions;

user functions can do both

5 User functions may use any sequential drive statement, but may not use any triggered drive
statements. Trigger functions may only use one drive statement; this is the appropriate
triggered drive statement declared in the DUT section (triggered-drive-
declaration)

6 A user function may call any other user or foreign function. A trigger function may only call
user or foreign functions that:

• execute in zero time (in other words, are not time-consuming), and

• do not execute trigger statements

A trigger function may advance time only by executing the drive statement associated with that trigger
function. When a trigger function is initiated, it may execute zero or more of these drive statements
before terminating.

7.8 Foreign functions

HDL routines may be called directly from user code, and must be declared in a foreign function
declaration, either before or after a call to the routine is encountered in the source code. Only calls to
Verilog tasks are supported in 2021.4.

The task must be declared as a foreign function as follows (see foreign-function-decl below):

1. the return type must be void

2. output and inout parameters must be declared as references; values are therefore returned by

reference

3. input parameters may be declared as references or plain variables

4. the parameters may optionally be named in the declaration; if so, the name is ignored

5. the parameters may be of type int, bit, var, or bool. bit and var parameters must be

correctly sized; int and bool parameters should be declared in the task as 32-bit variables

 Page 103/172

LRM 2.7 © 2008-2021 Maia EDA

6. the parameters may be declared to be arrays. However, this is not directly supported in Verilog-
2005, and the corresponding task parameter will need to be 'flattened' in the Verilog code. An
int[2] array in the Maia code, for example, should be declared in the Verilog to have a width of
[63:0]

7. the name of the foreign function must be the full hierarchical reference to the task. This will not
be a valid simple identifier, so must be given as an extended identifier (2.5)

The example code below calls the 'user' task in the Verilog code. The 'test' module generates two
instances of the task, which has a 40-bit input, and a 40-bit output which is returned by reference. The
task simply adds the current value of the genvar parameter, plus 1, to the input, and returns the result.

This example also illustrates the use of the exec statement to run the two instances in two different
threads:

DUT {

 module test();

}

foreign void \test.A[0].user\(var40, var40&);

foreign void \test.A[1].user\(var40, var40&);

void main() {

 int tid;

 exec instance0(tid);

 exec instance1(tid);

}

void instance0(int &tid) {

 var40 r;

 \test.A[0].user\(40'h01_0000_ffff, r);

 report("inst %d: r is %x\n", tid, r);

}

void instance1(int &tid) {

 var40 r;

 \test.A[1].user\(40'h01_0000_ffff, r);

 report("inst %d: r is %x\n", tid, r);

}

Example 72: foreign function, Maia code

module test();

 genvar instA;

 generate

 for(instA=0; instA<2; instA=instA+1) begin : A

 task user(input [39:0] i, output [39:0] o);

 begin

 o = i+instA+1;

 end

 endtask

 end

 endgenerate

endmodule

Example 73: foreign function, Verilog code

 Page 104/172

LRM 2.7 © 2008-2021 Maia EDA

If the Maia code is saved in 'test.tv', and the Verilog code in 'test.v', then the test can be run as follows:

$ rtv test.tv test.v

inst 1: r is 100010000

inst 2: r is 100010001

Syntax

foreign-function-decl :

 foreign void function-name (ff-formal-listopt);

ff-formal-list :

 void

 ff-formal-item-list

ff-formal-item-list :

 ff-formal-item

 ff-formal-item-list , ff-formal-item

ff-formal-item : typespec-ffp &opt identifieropt

typespec-ffp :

 typemark-ffp array-dimensionsopt

typemark-ffp : one of

 int bitn varn bool

7.9 Inter-function communication

Concurrent functions may communicate with each other through the use of external variables. A read-
modify-write operation on an external variable is guaranteed to be atomic, as long as it includes no
suspending statements (10.1).

 Page 105/172

LRM 2.7 © 2008-2021 Maia EDA

8 DUT SECTION

8.1 Introduction

Maia communicates with an external HDL program which describes the DUT (Device Under Test). In
order to carry out this communication, Maia requires some information about the DUT, and about any
test vectors (drive statements) which will be used to test the DUT. This information is placed in the
DUT section.

A DUT section (DUT-definition) is only required if there are drive statements in the program. There

may be a maximum of one DUT section, which may appear anywhere where a function is permissible.

Syntax

DUT-definition :

 DUT { dut-declaration-listopt }

dut-declaration-list :

 dut-declaration

 dut-declaration-list dut-declaration

dut-declaration :

 module-declaration semicolonopt

 sequential-drive-declaration semicolonopt

 triggered-drive-declaration semicolonopt

 dut-signal-declaration semicolonopt

 clock-declaration semicolonopt

 enable-declaration semicolonopt

 timescale-declaration semicolonopt

 timing-constraint semicolonopt

If the DUT section is present, and the program contains drive statements, then the DUT section must

include:

1. one module declaration

2. one or more drive declarations (sequential or triggered)

3. zero or more internal DUT signal declarations

4. zero or more clock declarations

5. zero or more enable declarations

6. zero or one timescale declarations

7. zero or more timing constraint declarations

The DUT section must contain at least one clock declaration (8.5) if any clocked logic is to be tested. If
it is only necessary to carry out delta-delay simulations on rising-edge clocked logic, then no timescale
or timing constraint declarations are required, and the default clock waveform is sufficient. If it is
necessary to carry out delta-delay simulations on falling-edge clocked logic, then timing constraints
must be provided to reference the inputs and outputs to the clock falling edge.

 Page 106/172

LRM 2.7 © 2008-2021 Maia EDA

DUT section declarations may appear in any order; declarations may optionally be semicolon-
terminated. DUT declarations have exactly the same lexical structure as the rest of a Maia program,
with the following exceptions:

a) If a module declaration contains a list of parameter values, then the parameter text
(modparam-text; everything between the #(and) terminators) is not analysed, and is

duplicated exactly in the testbench output

b) Any Verilog-2001 attributes (attribute) are ignored and are copied directly to the

testbench output, without analysis

c) Adjacent strings are not concatenated in a DUT section; every occurrence of a sequence of
characters between double-quote characters (") is a separate token.

The identifiers in a DUT section (with the exception of labels) must be valid identifiers for the target
language (dotted-identifier), since they will be duplicated exactly in the testbench output.

8.2 Module declaration

A module declaration provides the name of the DUT, and the names, sizes, and directions of its ports.

The declaration may also be used to provide the values of any parameters required by the DUT.

If the DUT has a Verilog 2001-style module definition1, then that definition may normally be cut-and-
pasted directly into the Maia code. This Verilog definition of a FIFO module, for example, may be
entered directly, with no changes, as a Maia module declaration:

DUT {

 module fifo // unmodified Verilog module definition; reused

 (input [7:0] in, // as a Maia module declaration

 input clk, read, write, reset,

 output [7:0] out,

 output full, empty);

 ...

}

Example 74

Maia understands Verilog port declarations, and ignores the information that it doesn't require (the

signed, reg, integer and time keywords, the various net_type keywords, attributes, and port

initialisers). This code implicitly declares 8 external variables which may be used anywhere in the Maia
code, as if the following explicit external declarations had been made:

var8 in, out;

var1 clk, read, write, reset, full, empty;

If no Verilog module definition is available (the code is VHDL, for example), or if the module definition
is in a pre-2001 form, then it will be necessary to derive a 2001-style equivalent to place in the Maia
code (8.2.3).

If the module definition is parameterised, or if it is necessary to pass parameter values into the
instantiated module (to override default parameter values in that module), then the module definition

1 Often (incorrectly) known as an 'ANSI-C' style definition

 Page 107/172

LRM 2.7 © 2008-2021 Maia EDA

will require some modification before being re-used as a Maia module declaration. No changes to the
HDL source code are required.

8.2.1 Parameterised modules

Consider, for example, this Verilog module definition:

module generic_fifo

 #(parameter MSB=3, LSB=0, DEPTH=6)

 (input [MSB:LSB] in,

 input clk, read, write, reset,

 output [MSB:LSB] out,

 output full, empty);

Example 75

This is a generic FIFO module, which defaults to 4-bit input and output buses, and a depth of 6 words.
A generic FIFO cannot be tested; a specific instance of that FIFO must be tested. The Maia declaration
is essentially an instantiation of a specific instance. To create the instantiation, two things must be
done:

1. any parameterised port sizes must be replaced with known sizes;

2. any parameters required in the module must be passed into the module.

If it is necessary to test generic_fifo with 16-bit ports, and an 8-word depth, then the following

module declaration can be used:

DUT {

 module generic_fifo

 #(.MSB(15), .LSB(0), .DEPTH(8))

 (input [15:0] in, // must use '15:0', not 'MSB:LSB'

 input clk, read, write, reset,

 output [15:0] out,

 output full, empty);

 ...

}

Example 76

The mechanism used to assign parameters is identical to Verilog's "module instance parameter value

assignment", which is the preferred way to assign values to module parameters in Verilog-2001.

An @ (U+0040) character may be used to introduce the parameter list, rather than the # character, if

preferred. This may be necessary if an external preprocessor is used1. If the @(syntax is used, then

there must be no whitespace between the two characters; if the #(syntax is used, then whitespace

may be inserted between the two characters.

The entire parameter list is copied verbatim to the testbench output, with no analysis. The list may
contain anything which is acceptable to the Verilog simulator. This example shows named association;
ordered list assignment may be used if preferred.

1 #(will generate an error in a C-compatible preprocessor.

 Page 108/172

LRM 2.7 © 2008-2021 Maia EDA

8.2.2 Module declaration error checking

Maia does not analyse the DUT HDL source code, and so cannot confirm that there is no error in the
module declaration. There are a number of potential errors which will only be caught by the Verilog
simulator, which may produce a cryptic error message. This will happen in the following cases:

a) the module declaration contains an incorrect name, port size, direction, or parameter list

b) any signal declarations contain incorrect names, port sizes, or directions

Note, however, that port length mismatches may not be reported as errors by the Verilog simulator.

8.2.3 Module input, output, and inout declarations

A module port list is a list of input, output, and inout declarations. The list must be enclosed in

parentheses, and individual items must be separated by commas.

This list (list-of-port-declarations) is also required for signal declarations (the 'ports' are

actually internal signals for signal declarations, but the syntax is identical). The list is identical to
Verilog's list_of_port_declarations1, with the exceptions that the Verilog definition has been

refactored to remove ambiguities, and the @ syntax is added for parameter lists.

The full list-of-port-declarations is parsed and checked, but the items which are not required

are ignored (the attributes, modifiers, initial assignments, and so on).

Some simple examples of module declarations are given below.

module test1(

 input[7:0] ina, inb, // two 8-bit input ports

 input C, // a 1-bit input port

 output[31:0] Q, // a 32-bit output port

 inout d, e, f, g) // four 1-bit bidirectional ports

module test2(output Q, input D); // 1-bit input, 1-bit output, ';' optional

Example 77

Note that a comma-separated list of names shares the same direction and port size, which appears at

the beginning of a sub-list.

8.2.4 Syntax

module-declaration :

 attributeopt module module-identifier module-paramsopt list-of-port-declarations

module : one of

 module macromodule

module-identifier : videntifier

module-params :

 @(modparam-text)

 #(modparam-text)

1 IEEE Std 1364-2005, 12.3.4

 Page 109/172

LRM 2.7 © 2008-2021 Maia EDA

list-of-port-declarations : (port-declaration-listopt)

port-declaration-list :

 port-list-first-item

 port-declaration-list port-list-next-item

port-list-first-item :

 attributeopt inout iodecl-modifiersopt port-identifier

 attributeopt input iodecl-modifiersopt port-identifier

 attributeopt output iodecl-modifiersopt port-identifier

port-list-next-item :

 , port-list-first-item

 , port-identifier

port-identifier :

 videntifier

 videntifier = constant-expression

videntifier :

 dotted-identifier

 string

iodecl-modifiers :

 iodecl-modifier

 iodecl-modifiers iodecl-modifier

iodecl-modifier :

 range

 modifier

range: [constant-expression : constant-expression]

modifier : one of

 integer reg signed time supply0 supply1 tri tri0 tri1 triand trior uwire

 wand wire wor

attribute : see below

dotted-identifier : see below

modparam-text : see below

The definitions of attribute, dotted-identifier, and modparam-text have been omitted for

simplicity. attribute is an optional Verilog-2001 attribute, while dotted-identifier is a Verilog

dotted identifier. modparam-text contains the entire contents of the parameter list, which is copied

verbatim to the output testbench, without analysis.

8.3 Drive declaration

A drive declaration defines the format of any test vectors which will be used in the body of the code.
The declaration simply lists the signals which are to be driven on the left-hand-side (LHS) of a test
vector, and the signals which are to be tested on the right-hand-side (RHS) of a test vector. A 'signal',
in this context, means either a DUT port, or an internal signal within the DUT.

 Page 110/172

LRM 2.7 © 2008-2021 Maia EDA

This example (a complete testvector-program) shows a simple declaration, and some drive

statements which use that declaration:

DUT {

 module test1(input D1, D2, CLK, output Q)

 create_clock CLK

 [D1, D2, CLK] -> [Q] // the drive declaration

}

[0, 1, .C] -> [0] // drive statement 1

[1, 0, .C] -> [1] // drive statement 2

Example 78

The declaration is required to allow Maia to determine that, in the first clock cycle, signals D1 and D2

should be driven with 0 and 1 respectively, signal CLK should be driven with a default clock waveform,

and signal Q should be tested against 0.

Any signals used in a drive declaration must themselves be declared elsewhere as a DUT port (8.2.3),

or as an internal DUT signal (8.4). Any signals on the LHS of a drive declaration must have an input

or inout direction; any signals on the RHS must have an output or inout direction.

8.3.1 Syntax

sequential-drive-declaration :

 drive-declaration

 identifier : drive-declaration

triggered-drive-declaration :

 @ identifier drive-declaration

 @ identifier { constant-expressionopt } drive-declaration

drive-declaration :

 [hdl-inputs-decl]

 [hdl-inputs-decl] -> [hdl-outputs-declopt]

hdl-inputs-decl : videntifier-list

hdl-outputs-decl : videntifier-list

videntifier-list :

 videntifier

 videntifier-list , videntifier

8.3.2 Clocked and combinatorial drive declarations

A drive declaration is defined as a clocked drive declaration1 if it includes a named signal on the LHS

which is defined elsewhere as a clock (8.5); it is otherwise combinatorial.

8.3.3 Sequential and triggered drive declarations

The drive statements used in user functions (such as main) have a slightly different format to the drive

statements used in trigger functions. If any drive statements are to be used in a user function, they

1 The term 'clocked' is used in preference to 'sequential' to avoid confusion with the software concept of sequential execution.

 Page 111/172

LRM 2.7 © 2008-2021 Maia EDA

must be declared as a sequential drive declaration (sequential-drive-declaration) in the DUT section. If
any drive statements are to be used in a trigger function, they must be declared as a triggered drive
declaration (triggered-drive-declaration) in the DUT section.

For the sequential form, the LHS must contain at least one signal. The entire RHS is optional; it may be
omitted if the drive statement is not required to test anything (if it used simply for internal DUT state
preload, for example). Sequential drive declarations may be either clocked or combinatorial (8.3.2).

The triggered form must be preceded by the name of the corresponding trigger function, including the
@ character. If there is any ambiguity in the function name, a complete signature should be provided

(with the number of parameters in {} braces). There must be exactly one signal on the LHS, and that

signal must be declared as a clock (a triggered drive declaration is therefore also a clocked drive
declaration).

Some examples of drive declarations and drive statements (6.8) are:

DUT {

 ...

 // sequential drive declarations:

 [A] // declaration 1: just drive A; no testing

 [A] -> [B] // declaration 2: drive A, test B

 [A] -> [B, C] // declaration 3: drive A, test B and C

 // triggered drive declarations:

 create_clock D // D is a clock for the triggered drives

 @trigfunc{0} [D] -> [E, F] // declaration 4: test E and F

 @trigfunc{3} [D] -> [G, H] // declaration 5: test G and H

}

void main() {

 // drive statements which are matched to declaration 1:

 [x+y]; // decl 1: drive A with x+y

 // drive statements which are matched to declaration 2:

 [z] -> [y]; // drive A with z, test B against y

 [4] -> []; // drive A with 4, don't test B

 [4] -> [-]; // drive A with 4, don't test B

 // drive statements which are matched to declaration 3:

 [x] -> [y,z]; // B: test against y; C: test against z

 [x] -> [-,z]; // B: no test; C: test against z

 [x] -> [y,] ; // B: test against y; C: no test

}

@trigfunc() {

 // any drive statements in this trigger function must be matched to declaration 4

 -> [x+y, 2]; // E: test against x+y; F: test against 2

}

@trigfunc(int i, int j, int k) {

 // any drive statements in this trigger function must be matched to declaration 5

 -> [foo1(), foo2()]; // G: test against foo1(); H: test against foo2()

}

Example 79

 Page 112/172

LRM 2.7 © 2008-2021 Maia EDA

8.3.4 Clocked drives

A clocked drive declaration includes one clock signal on the LHS. If the DUT has multiple clocks, it will

require multiple single-clock drive declarations.

Maia assumes that all the signals on the LHS of a clocked drive (apart from the clock itself) have setup
and hold requirements to that clock, and that all the signals on the RHS are produced from that clock,
and can be sampled at some time after the active clock edge (the active clock edge is determined from
the pipeline delay (9.2.4), and any timing declarations (8.7)). The required input setup and hold times,
and the required output hold and delay times, are determined from any timing declarations; defaults
are used if there are no timing declarations.

A sorted input event list is created for each drive declaration, for all the setup and hold events. When a

corresponding drive statement is encountered at runtime, it is executed as described in (10.8).

When the relevant clock edge is encountered during input event processing, it is also used to trigger a
checker process for each RHS signal. The checker confirms that the signal has the value of the
corresponding RHS expression at the output delay point, and also confirms that the signal does not
change at any time outside the window defined by the output hold and output delay times (the stability
window). It is the checker which is responsible for incrementing the internal test pass and fail counters
(_passCount and _failCount), and for reporting any DUT failures. The checker runs for one clock

cycle from the relevant clock edge; it is an error if a timing declaration sets an output hold or delay
time which does not fit into this timing window.

The checkers for the various outputs run independently, and two or more failures at the same
simulation time may be reported in different orders by different simulators, or during different runs with
a single simulator. This may cause confusion in regression tests in which failures are expected. If this is
the case, the output should be sorted before comparison1.

8.3.5 Mixing clocked and combinatorial signals

The procedure described above cannot be used to test a selection of inputs which are both clocked and
combinatorial, using a single drive declaration. Consider, for example, this declaration of a simple
counter with an asynchronous reset:

DUT {

 module counter(

 input ARST, // async reset

 PLD, // sync preload

 D, // input data

 CLK,

 output Q)

 create_clock CLK // default clock declaration

 [ARST, PLD, D, CLK] -> [Q]

}

Example 80

1 The default error and warning messages from mtv have a simple format, with a file name in field 2, a line number in field 4, a
time in field 5, and a signal name in field 7. This Unix command will sort the lines of a logfile according to simulation time, with
identical times sorted according to signal name:

$ sort –k 5,5n –k 7,7 –o mtv.log.sorted mtv.log

 Page 113/172

LRM 2.7 © 2008-2021 Maia EDA

Given this declaration, the resulting testbench will treat ARST as a synchronous signal, which will be

driven some time before the rising edge of CLK. This is likely to lead to a test failure when a test vector

activates ARST. A failure will be reported if the change in ARST causes the DUT to change Q at any

time within the expected stability window (between Q's output delay and the next output hold times).

Maia has no knowledge of whether a DUT input is 'clocked' or 'combinatorial'. The only information it
has is the drive declaration which, in this case, requests that ARST be tested in the same way as PLD,

D, and CLK. Since this drive declaration contains a declared clock, Maia treats it as a clocked drive. The

correct way to test this DUT is to have two drive declarations:

DUT {

 module counter(input ARST, PLD, D, CLK, output Q)

 create_clock CLK // default clock declaration

 [ARST] -> [Q] // async reset testing

 [PLD, D, CLK] -> [Q] // synchronous operation testing

}

[0] -> [-] // DUT output unknown; don't test

[1] -> [0] // reset the DUT

[0] -> [0] // turn off reset before sync testing

[1, 4, .C] -> [4] // sync preload of data '4'

[0, -, .C] -> [5] // count up

Example 81

8.3.6 Combinatorial drives

A combinatorial drive declaration is one which does not have a declared clock on the LHS.

Maia creates a 'cycle' time for combinatorial drives by using any relevant timing specifications, if there
are any, or by using a default value otherwise. Each execution of a corresponding drive statement
advances by this 'cycle' time.

There are essentially two choices for driving multiple combinatorial signals within this cycle. In the first,
the inputs are all driven at the same time, and tested at their individual tOD specifications. In the

second, the input timing is adjusted such that the outputs should nominally all change at the same
time, and the outputs are all tested together.

Maia uses the second scheme. It should be noted that neither scheme is ideal where there are path
dependencies (in other words, a single input affects multiple outputs, or multiple inputs affect a single
output), and Maia may automatically relax specific timing constraints if a conflict is present; see the
discussion on Constraint conflicts (8.9.7). A warning is always issued if a conflict is present.

8.3.6.1 Combinatorial cycle time

The combinatorial 'cycle time' is defined as twice the longest tOD parameter among the timing

specifications which are relevant to this drive declaration. The inputs are driven and the outputs are
tested in the first tODMAX period, and an additional tODMAX delay is then added before starting the next

cycle. This recovery period is added to simplify waveform displays.

Unconstrained input-to-output paths are given a default tOD of 5 time units. If no paths within a drive

declaration are constrained then all paths will be given the default timing, giving a cycle time of 10 time
units. In this case, the two alternative drive schemes become identical; the inputs are all driven at the

 Page 114/172

LRM 2.7 © 2008-2021 Maia EDA

same time, and are all sampled 5 time units later, with a further delay of 5 time units before the start
of the next cycle.

8.3.7 Sequential declaration signature

A DUT declaration may contain any number of sequential drive declarations. Declarations are matched
up to corresponding sequential drive statements using a signature, which is normally simply a count of
the number of signals on the LHS and RHS of the declaration. This example is, again, a complete and
valid program:

DUT {

 module test1(input D1, D2, CLK, output Q)

 create_clock CLK

 [D1, D2, CLK] -> [Q] // signature (3:1)

 [D1, CLK] -> [Q] // signature (2:1)

}

[0, 0, .C] -> [0] // signature (3:1)

[0, 1, .C] -> [1] // signature (3:1)

[1, .C] -> [1] // signature (2:1)

Example 82

However, it may be necessary to have more than one sequential drive declaration which has the same
signal count. In this case, the declarations must be distinguished by adding a label (an identifier (2.5))
to them. This label must be repeated in the drive statement:

DUT {

 module test1(input D1, D2, D3, D4, CLK, output Q)

 create_clock CLK

 v1: [D1, D2, CLK] -> [Q] // label v1; signature (v1:3:1)

 v2: [D3, D4, CLK] -> [Q] // label v2; signature (v2:3:1)

}

v1: [0, 0, 0, .C] -> [0] // signature (v1:3:1)

v2: [0, 0, 0, .C] -> [1] // signature (v2:3:1)

 [0, 1, 0, .C] -> [1] // ERROR: unknown signature

Example 83

8.4 Signal declaration

A signal declaration declares one or more internal signals inside the DUT. The signal name is a
videntifier, and may be anything that the back-end simulator recognises as an internal signal

name. This will normally be a Verilog-style dotted identifier.

A signal declared in this way is treated identically to a port name declared in a module declaration
(8.2). The signal is automatically declared as a global identifier, and so may be read or written directly,
or it may be used in a drive statement.

When a signal is written to, it is automatically set to the required level inside the DUT using a 'force'
mechanism. The force disables any other internal drivers on that signal, to allow it to take on the
required value. The force must be explicitly released by using the .R directive (9.3.3).

An example of the driving and testing of an internal signal is given in (9.3.3).

 Page 115/172

LRM 2.7 © 2008-2021 Maia EDA

8.4.1 Syntax

dut-signal-declaration:

 signal (port-declaration-list)

8.5 Clock declaration

A clock declaration allows timing to be specified relative to a clock, and allows the .C directive to create

a clock waveform to drive a DUT input, or to respond to a clock which is a DUT output.

create_clock identifies a DUT signal as a clock, and defines the required clock waveform. This

declaration is required only if the .C directive is used in a drive statement, or if a virtual clock is

required. A minimal create_clock declaration simply names a clock signal:

create_clock CLK // minimal clock declaration, default waveform

The named signal (CLK, in this case) must be declared elsewhere as a single-bit DUT input or output

port. If no waveform is specified, a default waveform is used; this is symmetrical, and has a period of
10ns. The waveform starts and ends at a low level (the 'default level'), and the rising edge occurs after
a short delay.

A clock declaration must include exactly one clock name (clock-name). The period, waveform, and

pipeline specifications are optional. If a waveform is specified, then a period must also be specified.
There must be a maximum of one period, waveform, or pipeline specification.

If the clock name is preceded by –name then the clock is a virtual clock. A virtual clock is a clock which

is not connected to the DUT; it is an error if the virtual clock name is also the name of a DUT port1.
Conversely, a clock which is declared without –name is a physical clock which connects to a DUT port.

In this case, it is an error if the physical clock name is not also the name of a DUT port.

Any constant values in a clock declaration are interpreted as floating-point numbers (4.6.1.1), in the

units of the declared timescale. The timescale defaults to nanoseconds if it is not specified.

Lists of time values (sdc-constant) may be either space-separated, or comma-separated, for

compatibility with other tools. A time may be specified as either a constant, or a constant expression. If
an expression is used, it must be enclosed in parentheses, to avoid parsing ambiguities (since the
expression may contain spaces).

Where create_clock is used to declare the waveform of a clock which is a DUT output, care should

be taken to ensure that the declaration matches the physical clock. The generated testbench will
synchronise to the clock produced by the DUT, if necessary (10.6).

8.5.1 Syntax

clock-declaration:

 create_clock clock-item-list

clock-item-list :

 clock-item

 clock-item-list clock-item

1 Virtual clocks may be used to drive or sample DUT signals at times which are unrelated to the timing of physical clocks.

 Page 116/172

LRM 2.7 © 2008-2021 Maia EDA

clock-item :

 clock-name

 clock-decl

clock-name :

 vnameopt videntifier

 vnameopt { videntifier }

vname : -name

clock-decl :

 period

 waveform

 pipeline

period : -period sdc-constant

waveform : -waveform { list-of-sdc-constants }

pipeline : -pipeline sdc-constant

list-of-sdc-constants :

 sdc-constant

 list-of-sdc-constants sdc-constant

 list-of-sdc-constants , sdc-constant

sdc-constant :

 constant

(constant-expression)

8.5.2 Period declaration

The clock period is specified with –period t. If the period specification is omitted, it defaults to 10; if

the timescale is also omitted, this is 10 ns.

The period must be greater than or equal to 2.

8.5.3 Waveform declaration

In normal usage, a waveform specification will include exactly two edges. In this case, the edge times
may increase or decrease:

create_clock CLK1 -period 30.5 -waveform { 10.2 20.6 }

create_clock CLK2 -period 20 -waveform { 15 5 }

Example 84

The first entry (or, in general, the odd-numbered entries) correspond to rising edges (10.2ns for CLK1,

and 15ns for CLK2), while even-numbered entries correspond to falling edges (20.6ns for CLK1, and

5ns for CLK2).

A waveform may be declared with any even number of edge times, for compatibility with other tools.

Any timing specifications will be relative to the first two edges in this waveform.

 Page 117/172

LRM 2.7 © 2008-2021 Maia EDA

A clocked drive statement defines the input and expected output signal behaviour over a single clock
cycle, as defined by the waveform. In other words, the 'start' of the clocked drive statement occurs at
the start of the clock waveform. This imposes two further restrictions on clock waveforms.

8.5.3.1 Input event timing restrictions

Any specified clock setup and hold times must fit inside the defined waveform. The example code
below defines a 20ns clock. All events defined by the setup and hold specifications must therefore fit
into time interval [0,20) ns1:

timescale ns

create_clock G period 20 waveform { 5 12 }

A -> posedge G = (5:-2) // 5ns setup to the rising edge is valid

B -> posedge G = (6:-1) // ERROR: 6ns setup is invalid

C -> negedge G = (12:1) // 12ns setup to the falling edge is valid

D -> negedge G = (13:1) // ERROR: 13ns setup is invalid

E -> negedge G = (1:7) // 7ns hold from the falling edge is valid

F -> negedge G = (1:8) // ERROR: 8ns hold is invalid

Example 85

An error will be reported during compilation if any setup and hold constraints cannot be met using the
specified waveform. In this case, the waveform should simply be adjusted to accommodate the
required setup or hold time.

8.5.3.2 Output event timing restrictions

The DUT output events do not have to fit into the time defined by the clock waveform. The reason is
that Maia starts a checker process when the relevant edge in the clock waveform is encountered; this
checker runs for one clock period from that edge. The output events must therefore fit into a clock
period plus the delay to the relevant clock edge. In this case, for clock G declared above, this is the

interval [5, 25) ns for outputs generated by the rising clock edge, or [12, 32) otherwise. An error will be
reported during compilation if any output hold or output delay constraints cannot be met using the
specified waveform. These constraints are unlikely to be violated, unless a drive statement tests
outputs which are generated on both the clock rising and falling edges, and the delays are long
compared to the clock period. If this is the case, the single drive declaration should be split into two
declarations, one of which tests outputs generated from the clock rising edge, while the other tests
outputs generated from the clock falling edge.

8.5.4 Pipeline declaration

The compiler must be able to statically determine the maximum pipeline level of any drive statement.
This is always possible, unless a drive statement contains a variable pipeline level:

DUT {

 module test(input A, B, CLK, output C);

 create_clock CLK –pipeline 6;

 [A, B, CLK] -> [C];

}

void main() {

1 Square brackets in intervals are inclusive; round brackets are exclusive. The interval [0, 20) therefore includes 0, and
excludes 20.

 Page 118/172

LRM 2.7 © 2008-2021 Maia EDA

 int plevel;

 ...

 [expr1, expr2, .C] ->plevel [expr3];

}

Example 86

In this example, plevel can change at runtime, and the compiler cannot determine in advance the

length of the checker pipeline associated with this drive statement. In this case, the maximum expected
pipeline size must be specified as part of the clock declaration for the clock associated with the drive
statement.

The maximum size is specified with –pipeline; in this case, it is declared to be 6 levels. A run-time

error will be issued if plevel is found to be greater than 6 whenever this drive statement is executed.

The compiler can always determine if a pipeline specification is required, and will report an error if it
has not been supplied.

8.5.5 Examples

Some examples of clock declarations are:

timescale ns

// the clock signals must be declared as single-bit module inputs:

module test(input A,B,C,D, ...)

// A: symmetrical, default 10ns period, rising edge first

create_clock A

// B: 25ns period; will only be symmetrical if the resolution is <= 500ps

create_clock B -period 25

// C: 30.5ns period, with a rising edge at 10.2ns, and a falling edge at 20.6ns

create_clock testmod.C -period 30.5 -waveform { 10.2 20.6 }

// D: 20ns period, falling edge at 5ns, rising edge at 15ns

#define PERIOD 20

create_clock

 -period PERIOD

 -waveform { (PERIOD-5 /* = 15ns */) 5 } D

Example 87

8.6 Enable declaration

A bi-directional signal may be driven both by the Maia testbench, and by the DUT, and so is subject to

possible contention. Contention can always be avoided by instructing the testbench to drive a Z to the

DUT before enabling the DUT output drivers. However, this can be tedious and error-prone, and the
process can be automated by declaring a DUT signal as an enable control, using create_enable.

8.6.1 Syntax

enable-declaration :

 create_enable enable-list

 Page 119/172

LRM 2.7 © 2008-2021 Maia EDA

enable-list :

 enable-item

 enable-list , enable-item

enable-item :

 enable-port enable-port-sliceopt enable-control

enable-port : identifier

enable-port-slice :

 . (constant-expression)

 . (constant-expression : constant-expression)

enable-control :

 (enable-levelopt control-sig)

enable-level : !

control-sig : identifier

enable-port must be a DUT output or inout; it may not be an internal DUT signal.

enable-port-slice has the same semantics as a bitslice (4.5.4.5). The indexes must be in range

for enable-port, and must not overlap with any indexes specified in any other create_enable for

this enable-port.

If enable-level is specified as !, then the enabling level is defined as 0. If enable-level is

omitted, then the enabling level is defined as any non-zero value. The testbench drives enable-port

only when control-sig has the value of the enabling level. If control-sig has any other value,

the testbench will tristate enable-port.

control-sig must be a DUT input or output, or an external variable.

8.6.2 Manual bidirectional control example

This code is part of a testbench for a 16-bit by 16-word RAM. The RAM has a bi-directional data bus
(D), and an active-high data enable (DEN). The RAM tristates D when DEN is 0, and drives D when DEN

is 1. Read operations are asynchronous.

DUT {

 module RAMB_1RW

 (inout [15:0] D,

 input [3:0] ADR,

 input CLK, WE, DEN);

 ...

 create_clock CLK; // default clock waveform, 10ns period

 [CLK, DEN, WE, ADR, D]; // clocked write; nothing to test

 [DEN, ADR, D] -> [D]; // combinatorial data bus read; D appears on both sides

}

void main() {

 ...

 // 1: write data to the RAM

 Page 120/172

LRM 2.7 © 2008-2021 Maia EDA

 [.C, 0, 1, e1, e2]; // write data e2 to address e1

 // 2: read data from the RAM

 [1, e3, .Z] -> [e4]; // read data from address e3, test against e4

}

Example 88

During the write operation, the testbench must set DEN to 0, to disable the RAM's output drivers.

During the read operation, the testbench must set DEN to 1, to enable the RAM's output drivers; it must

also tristate its own D output drivers, so that it can read back the data driven by the RAM. If the

testbench accidentally enables both sources (by setting DEN to 1, and driving D with anything other

than .Z), then it will read invalid data (probably X) from the DUT, and the test will fail.

8.6.3 Automatic bidirectional control example

The potential error of (8.6.2) can be avoided by declaring DEN as an enable signal, using

create_enable:

DUT {

 ...

 create_enable D(!DEN);

}

void main() {

 ...

 // 2: read data from the RAM

 [1, e3, -] -> [e4]; // read data from address e3, test against e4

}

Example 89

The declaration states that D is a tristate signal, and that the testbench may only drive D when DEN is

0. When DEN is non-zero, the testbench automatically drives D with Z, ignoring whatever value has

been requested in the drive statement (in this case, a '–' was specified; this is a don't care condition).

8.7 Timescale declaration

The simulation timescale is specified as

timescale ts

where ts is one of seconds (s), milliseconds (ms), microseconds (us), nanoseconds (ns), picoseconds

(ps), or femtoseconds (fs). If no timescale directive is provided, the timescale defaults to ns. There

may be a maximum of one timescale declaration in the DUT section. The timing resolution is derived
automatically, as described in (8.8).

Syntax

timescale-declaration:

 timescale timescale-units

timescale-units : one of

 s ms us ns ps fs

 Page 121/172

LRM 2.7 © 2008-2021 Maia EDA

8.8 Time precision and representation

Times are represented as ordinary expressions. Time values are required primarily in the DUT section,
but are also required for wait statements (6.9) in user functions. Times are not explicitly entered with

a timescale unit (such as 'ns'); there is instead a timescale declaration which sets the required unit.

Times may be specified with an arbitrary precision. The compiler deduces the required precision by
examining all constants in time expressions, and setting the precision to the maximum precision found.

DUT { // a minimal DUT section with timing

 module test(input C, D, output Q)

 [C, D] -> [Q] // drive declaration

 timescale ns // timescale declaration

 create_clock C // clock declaration

 D -> posedge C = (0.1 : 2.340) // tSU/tIH

 posedge C -> Q = (1 : 3.1) // tOH/tOD

}

Example 90

In this example, the maximum precision is 2 decimal digits (note that trailing zeroes are ignored),
which is equivalent to a precision of 10ps (assuming that the body of the code does not contain any
wait statements with a higher timing precision).

In some circumstances it is possible to specify a timescale and precision which cannot be supported by

the target simulator (a ns timescale, for example, with 7 decimal digits of precision, is equivalent to a

timing precision of 0.1 fs, which is not in the range supported by Verilog simulators). The compiler will
report an error in this case.

Hex floating-point values may not be used for time values, since the compiler needs to count decimal
digits.

All time values in a DUT section must be constants or constant expressions (in other words, expressions

which can be evaluated during compilation). The time delay in a wait statement must also be a

constant or a constant expression; a dynamic wait can be achieved by putting a constant wait inside a
loop.

A constant expression may include floating-point operations. The calculated precision is not affected by
floating-point operators; the precision is derived solely from the constants in the code. If a floating-
point operation is used, then care should be taken to ensure that the correct number formats and
operators are used; (2 * 0.1), for example, is not equal to 0.2. In this case, (2.0 .F* 0.1)

should be used; see (4.6.1.1) and (4.6.1.2).

8.8.1 Floating-point values in parameter lists

In some circumstances it may be necessary to pass floating-point values into a DUT as a parameter in a

module declaration:

module test #(.tCO(0.2)) (input A, B, output C);

In this case, the intention is to pass the number '0.2' as the tCO parameter to the DUT. If the Maia

timescale is ns, then this might be expected to set a clock-to-out delay of 0.2 ns. Recall, however, that

module parameter lists are copied direct to the testbench code with no analysis or processing (8.2.1),
and the number '0.2' will therefore appear verbatim in the DUT instantiation in the testbench code.

 Page 122/172

LRM 2.7 © 2008-2021 Maia EDA

Furthermore, if the DUT is expecting a floating-point timing parameter, then it will almost certainly
have its own timescale directive, which will over-ride the timescale directive in the Maia output. In
summary, then, any floating-point values in a parameter list are ignored by Maia (along with the rest of
the parameter list), and must be specified in a format which will be understood by the DUT itself.

8.9 Timing constraint declaration

A timing constraint declaration specifies either the required setup and hold times on the DUT's
synchronous inputs, or the expected delays on the DUT outputs (both synchronous and combinatorial).
Timing declarations are optional; they may be either omitted entirely, or applied to some, or all, of the
DUT ports1. Timing declarations are only required when carrying out a timing simulation with a back-
annotated netlist; the simulation will almost certainly fail without appropriate timing declarations. The
declarations may be omitted when carrying out delta-delay simulations.

The purpose of the timing declarations is to ensure that any synthesis constraints were correctly
specified, interpreted and applied, and that the resulting netlist correctly implements those constraints.
The values in the Maia timing declarations should therefore be the same as any values that are
specified in the synthesis constraints file. The synthesis constraints should therefore be translated
directly into the equivalent Maia format. For this reason, Maia timing declarations are generally referred
to as 'constraints' in this manual, although they are not of course synthesis constraints.

There are four constraints which can be applied to DUT signals, which are:

• A synchronous input setup time (tSU)

• A synchronous input hold time (tIH)

• A synchronous or combinatorial output hold time (tOH)

• A synchronous or combinatorial output delay (tOD). The symbol tOD is generally used in this

manual for both cases, although tCO may also be used for synchronous (clocked) outputs.

Constraints may be applied either to DUT ports, or to internal DUT signals. tSU and tIH constraints

may be applied to both inputs and inouts; tOH and tOD may be applied to outputs and inouts.

8.9.1 Syntax

timing-constraint :

 timing-constraint-LHS = timing-constraint-RHS

 (timing-constraint-LHS) = timing-constraint-RHS

timing-constraint-LHS :

 tidentifier-list timing-drive tidentifier-list

 timing-edge videntifier timing-drive tidentifier-list

 tidentifier-list timing-drive timing-edge videntifier

tidentifier-list :

 *

 videntifier-list

1 Care should be taken when constraining some paths to a combinatorial output, and not others; see (8.9.7).

 Page 123/172

LRM 2.7 © 2008-2021 Maia EDA

videntifier-list :

 videntifier

 videntifier-list , videntifier

timing-drive : one of

 -> to

timing-edge : one of

 posedge negedge

timing-constraint-RHS :

 (constant-expression)

 (tconstraint-RHS-valopt : tconstraint-RHS-valopt)

tconstraint-RHS-val :

 constant-expression

Constraints (timing-constraint-RHS) are normally specified as pairs of floating-point values, in the

form (t1:t2). t1 and t2 are time values in the simulation timescale (8.7). These pairs correspond to

(tSU:tIH) for inputs, and (tOH:tOD) for outputs. The tIH and tOH values are optional, however,

so constraints may also be specified as single floating-point values, in the form (t), (:t), or (t:).

8.9.2 Input constraint definition

An example of an input constraint is:

D -> posedge C = (3.2 : 2.1)

Example 91

This constraint should be interpreted as follows, assuming a ns timescale:

• the new value of the D input must be valid by, at the latest, 3.2ns before the rising edge of C

• the new value of the D input must remain active for at least 2.1ns after the rising edge of C

These requirements are best represented in terms of an analog waveform:

D

C

3.2 2.1

t1 t2 t3

Figure 3: Input constraint definition

To match the required behaviour, the testbench drives D to the required value 3.2ns before the clock

edge, and maintains this value until 2.1ns after the clock edge, when D is driven to X. D then remains

at X until 3.2ns before the next clock edge. If the DUT is to correctly respond to this stimulus, then it

must be timing-aware: it cannot simply sample D at the two end-points, for example, because the

 Page 124/172

LRM 2.7 © 2008-2021 Maia EDA

sample event may occur either before or after the D change event within a given sequence of delta

cycles.

8.9.3 Output constraint definition

An example of an output constraint is:

posedge C -> Q = (2.5 : 5.3) // clocked version

A -> B = (2.5 : 5.3) // combinatorial version

Example 92

These two constraints are treated identically, except that the combinatorial constraint is tested from
any change in A, while the clocked constraint is tested only from a rising edge of C (or a falling edge,

if negedge is instead specified). For simplicity, the discussion below considers only the clocked case.

This constraint should be interpreted as follows, assuming a ns timescale:

• The old value of the Q output must hold until at least 2.5ns after the rising edge of C

• The new value of the Q output must be valid by, at the latest, 5.3ns after the rising edge of C

These requirements are best represented in terms of an analog waveform:

Q

C

2.5
5.3

t1 t2 t3

Figure 4: Output constraint definition

The Maia testbench samples Q in such a way as to guarantee that a pass will be reported if, and only if,

the following three conditions are fulfilled, independently of any race conditions:

• Q retains its old value until, and including, time t2

• Q has the expected new value at time t3

• Q does not change at any time until the next t2 (this is the 'stability window')

8.9.4 Input setup and hold constraints

tSU and tIH may be either positive or negative. tSU is measured before the relevant clock edge: a

tSU of 1, for example, means one time unit before the clock edge, while a tSU of –1 means one time

unit after the clock edge. tIH is measured after the relevant clock edge: a tIH of 1, for example,

means one time unit after the clock edge, while a tIH of –1 means one time unit before the clock

edge.

 Page 125/172

LRM 2.7 © 2008-2021 Maia EDA

The time specified by the value of tSU must be before (or at the same time as) the time specified by

the value of tIH.

If the tSU and tIH constraints are present, Maia will drive the relevant DUT input as described in

(8.9.2). The examples below assume a ns timescale, and show the times over which the input is driven

with the required value, as an inclusive range relative to the clock edge. The time interval [-2.1, -0.1],
for example, means that the input is driven with the required value for a total time of 2.0ns, which
starts 2.1ns before the clock edge, and ends 0.1ns before the clock edge.

D -> posedge C = (2.1: 0.1) // valid 2.2ns: [-2.1, 0.1]

D -> posedge C = (2.1:-0.1) // valid 2.0ns: [-2.1,-0.1]

D -> posedge C = (-0.5: 0.7) // valid 0.2ns: [0.5, 0.7]

D -> posedge C = (-0.5:-0.1) // ERROR: cannot both be <0

// D setup and hold relative to the falling edge of C

D -> negedge C = (-0.5: 0.7) // valid 0.2ns: [0.5, 0.7]

// 'to' is alternative syntax for '->'

D to negedge C = (-0.5: 0.7) // valid 0.2ns: [0.5, 0.7]

// the hold is optional, and defaults to 0: the setup

// must therefore be >= 0

D to posedge C = (0.5) // valid 0.5ns: [-0.5, 0.0]

D to posedge C = (-0.5) // ERROR: setup after hold

Example 93

If no constraints are applied to a synchronous DUT input, Maia will assume that the input is untimed,
and will drive the input a short time before the rising clock edge, and will maintain the driven value
until the same point before the next clock edge (10.8).

8.9.5 Output hold and delay constraints

tOH is the time for which a DUT output is guaranteed not to change after any change on a controlling

input1. tOH must therefore be greater than or equal to zero. No hold time check is carried out if tOH is

specified as zero, or omitted.

tOD is the time at which the DUT output is guaranteed to have its new value. tOD must therefore be

greater than tOH; it is illegal for both to have the same value, unless both are zero (tOH = tOD = 0 is

a special case, which corresponds to an untimed or delta-delay DUT).

Note that tOH is not equivalent to a minimum output delay. A tOH specification requires that the

output has not changed at time tOH, while a minimum output delay specification requires that an

output has, or may have, changed at that time. A minimum delay specification for a device output is of
little or no use.

The tOD specification should normally be the same as the value specified in the synthesis constraints

file, and so will normally be the expected maximum output delay. There is no mechanism to specify

1 A 'controlling input' is the relevant clock edge for a sequential drive statement, or the last input to change for a combinatorial
drive statement.

 Page 126/172

LRM 2.7 © 2008-2021 Maia EDA

minimum, typical, and maximum output delays; it would make no more sense to specify these in Maia
than it would in a synthesis constraints file.

If the tOH and tOD constraints are present for a given DUT output, Maia will test the output as

described in (8.9.3).

Synchronous output constraints must name a declared clock on the LHS, and must have a posedge or

negedge qualifier; for example:

posedge C -> Q = (2.0) // tOD (tCO) from C to Q

Example 94

A constraint which does not have a posedge or negedge qualifier is a combinatorial constraint, and

should be applied only to combinatorial outputs; for example:

A -> B = (2.0) // tOD from A to B

Example 95

Some example specifications are given below.

posedge C -> Q = (0.2 : 3.1)

posedge C -> Q = (-0.2 : 2.1) // ERROR: tOH and tOD must be >= 0

posedge C to Q = (4.1 : 2.1) // ERROR: tOH must be <= tOD

A -> B = (0.1 : 2.5)

B to C = (2.0) // hold optional; this is equivalent to (0:2.0)

Example 96

If no constraints are applied to a DUT output, Maia will assume that the output is untimed, and will
sample it a short time after any controlling input has changed value. No output hold test is carried out;
in other words, there is no test that the output retains its previous value after any controlling input
changes value.

8.9.6 Wildcard constraints

Where the syntax allows a list of DUT signals (tidentifier-list) in a constraint declaration, that

list may instead be specified as a * wildcard. Some examples of wildcard constraints are:

* -> posedge CLK1 = (0.8, 3.1) // case 1: setup and hold to a clock

negedge CLK2 -> * = (9.6) // case 2: output delay from a clock

* -> D = (2.1, 5.3) // case 3: combinatorial

E -> * = (4.2) // case 4: combinatorial

Example 97

The wildcard is a shorthand notation for all the signals on the LHS of a drive declaration (excluding the
clock itself, for a clocked constraint), or all the signals on the RHS of a drive declaration. It is not a
shorthand for all possible paths from an input to an output; Maia does not analyse the DUT to find
these paths, but instead relies on any drive declarations.

For case (1), all the signals on the LHS of any drive declaration which is clocked from CLK1 are

assumed to have the same setup and hold to CLK1 (in this case, 0.8 and 3.1).

For case (2), all the signals on the RHS of any drive declaration which is clocked from CLK2 are

assumed to have the same tCO specification from CLK2 (in this case, 9.6).

 Page 127/172

LRM 2.7 © 2008-2021 Maia EDA

Case (3) is applied to any combinatorial drive declaration which lists D as an output. In this case, all

signals on the LHS of those drive declarations are given the same tOH and tOD specification to D (in

this case, 2.1 and 5.3).

Case (4) is applied to any combinatorial drive declaration which lists E as an input. In this case, all

signals on the RHS of those drive declarations are given the same tOD specification from E (in this

case, 4.2).

Care should be taken when using a wildcard in a combinatorial drive, to avoid possible constraint

conflicts; see (8.9.7).

8.9.7 Constraint conflicts

In general, there are two classes of conflict which are possible when testing combinatorial paths:

1 If a combinatorial output is derived from more than one input, then it may not be possible
to test all the output hold requirements on that output (8.9.7.1);

2 If multiple outputs have common dependent inputs, then it may not be possible to test all
the output delay requirements on those outputs (8.9.7.2).

These conflicts apply only to combinatorial constraints. When a conflict is detected, one or more
constraints must be relaxed; the compiler can always detect conflicts and will issue a warning
identifying the relaxed constraints.

If it is necessary to fully test the timing of combinatorial outputs, then separate drive
declarations should be created for each constrained input-to-output path, and each should
be tested separately. Any attempt to test multiple combinatorial paths using single drive declarations
will rapidly become unworkable; see (8.9.7.1) and (8.9.7.2).

8.9.7.1 Conflict case 1: multiple inputs

Consider these two timing constraints, for two inputs to a combinatorial circuit:

 A -> D = (14 : 18) // tOH = 14, tOD = 18

 B -> D = (6 : 12) // tOH = 6, tOD = 12

Example 98

In this case, Maia arranges the DUT timing such that A is driven at relative time 0, and B is driven at

time 6. If D is to change, it should therefore take on its new value at, or before, time 18 (Figure 5).

This method tests both tOD requirements, and guarantees that a tOD failure will be detected

(although, if there is a failure, it cannot determine which of the two paths has failed). However, it is
now impossible to test both tOH requirements.

If the DUT is correctly implemented, D will remain valid until at least time 12. However, if D does

change in the time range (12, 14], Maia cannot tell whether the change is allowable (as a result of a
change in B), or a violation (as a result of a change in A, before A's hold time specification has

expired). For these constraints, the compiler will report that the hold time requirement has been
relaxed, and that the hold specification from A to D has been dropped.

 Page 128/172

LRM 2.7 © 2008-2021 Maia EDA

A

B

D

0 6 12 18

Figure 5: Multiple input constraint conflict

The situation is worse if there are any further inputs to D, but they have not been constrained. Consider

this drive declaration:

 [A, B, C] -> [D] // test a 3-in combinatorial circuit

Example 99

If only the two paths A-D and B-D have been constrained, Maia will set the unconstrained path from C

to D as follows:

• the hold time is assumed to be 0;

• the output delay is set to a default value, which is not related to any specified output delays.

This will almost certainly not produce the required results. When constraining combinatorial circuits, all
input to output paths should be constrained with a tOD specification, and a single hold specification

should be used for all paths by providing a wildcard. Maia will then only test the hold specification for
the controlling input (the last input that changes). The required constraints are now:

* -> D = (6, 18) // hold requirement from any input

A -> D = (18) // tOD only

B -> D = (12) // tOD only

Example 100

The tOD value in the wildcard constraint is arbitrary, since it will be overridden by the higher-priority

individual specifications; however, it should be at least 6 to avoid a syntax error.

8.9.7.2 Conflict case 2: multiple outputs with dependent inputs

Consider these timing constraints, for two combinatorial outputs driven from two inputs:

DUT {

 module comb1 (input A,B, output D,E)

 [A,B] -> [D,E]

 A -> D = (14 : 18)

 B -> D = (6 : 12)

 A -> E = (6 : 9)

 B -> E = (5 : 12)

}

Example 101

If the D output is considered, and the same procedure is followed as in (8.9.7.1), then the times at

which the testbench must drive A and B are again as shown in Figure 5. However, if the E output is

 Page 129/172

LRM 2.7 © 2008-2021 Maia EDA

now considered, it is apparent that A and B are driven at arbitrary times. The consequence of this is

that the testbench now cannot detect a failure in the tOD specifications for the path A-E:

A

B

D

0 6 12 18

E

Figure 6: multiple output constraint conflict

For these constraints, the compiler will warn that the timing on input A has been relaxed (and that the

output hold times on D and E have also been relaxed).

 Page 130/172

LRM 2.7 © 2008-2021 Maia EDA

9 DRIVE STATEMENT

9.1 Introduction

A module declaration (8.2) creates a set of named external variables which correspond to the input,
output, and bidirectional ports of the DUT, while a signal declaration (8.4) creates equivalent named
variables which correspond to specified internal signals within the DUT. In principle, having direct
access to these variables is sufficient to allow simple manual testing of the DUT, in a procedure such
as:

• wait until an input port setup point, using a wait statement

• assign an expression to the input port

• wait, set the clock active

• wait until an output port is expected to be valid

• read the output port and check it; report the results with report or assert

• set the clock inactive, and wait until the start of the next cycle

However, this procedure is complex, and quickly becomes impractical when a number of ports have to
be driven and tested, or when the outputs are pipelined, or when various inputs and outputs have
different timing. Maia automates this procedure using a drive statement. A drive statement has a
number of advantages over the manual process described above:

• automated input, output, and bidirectional timing derived from constraints

• automated stability testing (glitch checking)

• automated pipelined output testing (outputs tested a known number of clock cycles after the

inputs change)

• automated triggered output testing (outputs tested after a trigger condition is found)

• automated pass/fail counting, and error reporting

• internal DUT signals are treated identically to external ports, without the need for force/release
semantics

• automated bus direction switching for bidirectional signals

• automated clock timing and driving

• static type checking on port and signal directions

• optional static type checking that confirms that module signals are driven by, or compared

against, expressions of the correct bit size

This clause describes the syntax and semantics of drive statements. The procedure used to execute a
drive statement at run-time is described in (10.8), (10.9), and (10.10).

 Page 131/172

LRM 2.7 © 2008-2021 Maia EDA

9.2 Statement format

A drive-statement includes an optional list of input expressions on the left-hand side, a separator,

an optional pipeline expression, and an optional list of output expressions on the right-hand side. Each
input and output expression is matched to a port or a signal which is named in the corresponding drive
declaration (8.3).

There are three different forms of drive statement, since the input and output lists are optional.
Output-only drive statements are triggered drive statements. The other two forms (the form with inputs
only, and the form with both inputs and outputs) are sequential drive statements. Sequential drive
statements may additionally be pipelined.

Sequential drive statements may be used only in user functions (7.5); triggered drive statements may
be used only in trigger functions (7.7).

9.2.1 Drive statements with both input and output expressions

A drive statement with both input and output expressions drives the inputs specified in the
corresponding drive declaration, and tests the outputs specified in the same drive declaration. This
program (an example of a complete testvector-program) includes two drive statements:

DUT {

 module test1(input D1, D2, CLK, output Q)

 create_clock CLK

 [D1, D2, CLK] -> [Q] // sequential drive declaration (8.3.3)

}

[0, 1, .C] -> [0] // drive statement 1

[1, 0, .C] -> [1] // drive statement 2

Example 102

In the first clock cycle, D1 is driven to 0, and D2 is driven to 1, before driving the clock. The output is

then tested against 0. In the second clock cycle, D1 is driven to 1, and D2 is driven to 0, before driving

the clock. The output is then tested against 1.

9.2.2 Input-only drive statements

A drive statement, and the corresponding declaration, may omit the right-hand side. In this case, the

inputs are driven as specified, and no outputs are tested:

DUT {

 module test1(input D1, D2, CLK, output Q)

 create_clock CLK

 [D1, D2, CLK] -> [Q] // sequential drive declaration 1 (8.3.3)

 [D1, CLK] // sequential drive declaration 2

}

[0, 1, .C] -> [0] // drive statement 1

[1, 0, .C] -> [1] // drive statement 2

[0, .C] // clear D1, advance one clock cycle

Example 103

 Page 132/172

LRM 2.7 © 2008-2021 Maia EDA

9.2.3 Output-only drive statements

An output-only drive statement is a triggered drive statement, and may be used only in a trigger
function. The corresponding drive declaration must include a single input, which must be a declared
clock. The trigger function is implicitly driven from this clock:

DUT {

 module test1(input D1, D2, CLK, output [15:0] Q);

 create_clock CLK;

 @tfunc [CLK] -> [Q]; // triggered drive declaration (8.3.3)

}

void main()

 int x;

 ...

 trigger tfunc(x) when Q == 7;

}

@tfunc(int y) {

 ->[y+2]; // Q should be 'x+2' the cycle after it is 7

 ->[8]; // Q should be 8 two cycles after it is 7

}

Example 104

Output-only drive statements are unusual in that the drive declaration and the drive statement do not
match. The declaration must include a single clock input, but the statement itself omits the clock input,
since it is not responsible for driving the clock (in the example above, the clock might be driven from
main, but the resulting output is tested in tfunc).

Triggered drive statements may not include a pipeline expression.

9.2.4 Pipelined drive statements

Sequential drive statements may optionally include a pipeline expression after the -> separator; if the

expression is omitted, the pipe level defaults to one (in other words, the outputs are tested immediately
after the clock edge). Note that combinatorial drive statements may not be pipelined; a pipeline
expression is illegal if there is not a declared clock on the LHS of the declaration.

The pipeline level may be specified as an integer constant, an identifier for a variable, or an expression
(which must be enclosed in parentheses to avoid ambiguity). However, the pipeline level must be
known before the drive statement is executed; the expression is sampled when the statement is
reached. If the pipeline level cannot be determined in advance, then a triggered drive statement should
be used, rather than a pipelined drive statement.

DUT { // 4-stage pipelined 8x8 multiplier

 module test(

 input [7:0] D1, D2,

 input CLK,

 output [15:0] Q);

 create_clock CLK;

 [D1, D2, CLK] -> [Q];

}

void main() {

 var8 i,j;

 for all i

 Page 133/172

LRM 2.7 © 2008-2021 Maia EDA

 for all j

 [i, j, .C] ->4 [i *$16 j];

}

Example 105

9.2.4.1 The pipelined checker

A pipelined drive statement creates a pipelined checker for any signals on the RHS of the declaration.
For the example above, the pipeline is advanced by CLK, and the expected output data is loaded into

level 4 of the pipeline. The expected output data progresses down the pipeline, and is tested against Q

when it emerges from level 1.

9.2.4.2 Checker flushing

Pipelined checkers are automatically flushed when the program terminates. Any outstanding test
operations are completed, and the results are recorded. If necessary, however, a pipelined checker can
be manually flushed simply by issuing further operations with don't-care inputs. The 4-stage multiplier
above may be manually flushed as follows:

void main() {

 var8 i,j;

 for all i

 for all j

 [i, j, .C] ->4 [i *$16 j];

 [-,-,.C] -> [255 *$16 253];

 [-,-,.C] -> [255 *$16 254];

 [-,-,.C] -> [255 *$16 255];

}

Example 106

There is no simple way to test the pipeline output before the pipeline has filled (for the example above,
Q is not tested until the fourth clock edge). If necessary, a separate trigger function may be used to

check the outputs while the pipeline is filling.

When changing the required pipeline level, it is potentially possible to overwrite a given level in the
checker. A runtime error will be reported if existing (untested) data in the checker is overwritten with
new data. However, 'don't care' data may be written into the checker without affecting the previous
data at that level. Uninitialised levels in the checker are treated as don't care data (in other words, no
test is carried out when the uninitialised level emerges from the checker pipeline).

9.2.4.3 Determining the maximum checker pipeline size

The required maximum size of any checker pipeline must be statically determinable. The compiler
automatically determines the required maximum size if all the drive statements referring to a given
pipeline have statically determinable pipe levels (in other words, the level is specified as a constant or
as a constant expression). If, however, the required maximum size cannot be determined during
compilation, then it must be specified as part of the clock declaration, with a –pipeline specification

(8.5.4).

 Page 134/172

LRM 2.7 © 2008-2021 Maia EDA

9.3 Drive directives

Drive statements may contain directives, rather than expressions. Directives are case-insensitive, and
are either shorthand for specific input and output conditions, or specify some action on or within the
DUT.

9.3.1 .C

This directive may appear only on the left-hand side of a drive statement, in a position which
corresponds to a single-bit port which has been declared as a clock (8.5). It may only appear once in a
drive statement; there is no mechanism to clock more than one input simultaneously. This directive
appears only in clocked drive statements; it cannot be used in combinatorial drive statements.

The clock directive instructs the simulator to advance one clock cycle, using the default clock waveform
or the waveform defined in the clock declaration. The testbench automatically times inputs and samples
outputs according to this clock waveform.

9.3.2 .X and .Z

When these directives appear on an input, the entire input is driven to X or Z; when they appear on an

output, the entire output is tested against X or Z.

9.3.3 .R

This directive specifies an internal 'release' condition within the DUT. It may only appear on the left-
hand side of a drive statement, in a position corresponding to an internal DUT signal (8.4); it may not
be specified for a DUT port.

Internal DUT signals may be driven in the same way as external DUT ports, but this is handled
internally by disabling the internal DUT driver that would otherwise have driven that signal. This
internal driver is automatically disabled whenever a drive statement applies an expression to an internal
signal; it remains disabled until the .R directive is issued.

This directive is applied with the same timing as any other expression applied to the specified internal
signal. If, for example, a timing declaration specifies that the internal signal has a setup of 2.1ns to a
declared external clock, then the .R directive will re-enable the internal driver 2.1ns before that clock.

The example below shows a 4-input 1-output clocked module. The Q output is driven from a D-type

register, and the input to the D-type is named Dint in the HDL code. Dint is declared as a signal in

the DUT declaration, and so may be driven from the testbench, to force the DUT output to a specific
value. Left to its own devices, this DUT would produce the output sequence 01010101 over eight clock

cycles; this code instead forces the output in cycles 3, 4, 5, and 6 to produce 01100001 instead.

 Page 135/172

LRM 2.7 © 2008-2021 Maia EDA

DUT {

 module test(input A, B, C, CLK, output Q)

 signal (input mod1.Dint) // signal in the 'test' module (test.mod1.Dint)

 create_clock CLK

 [CLK, mod1.Dint] -> [Q] // force the output

}

// start with the internal driver enabled

[.C, -] -> [0] // the testbench is not driving Dint

[.C, -] -> [1]

[.C, 1] -> [1] // output should be 0, is forced to 1

[.C, 0] -> [0] // output should be 1, is forced to 0

[.C, -] -> [0] // output should be 0, is forced to 0

[.C,] -> [0] // output should be 1, is forced to 0 ('-' is optional)

[.C, .R] -> [0] // internal driver re-enabled, output takes on internal value

[.C, -] -> [1] // internal driver remains enabled

Example 107

9.3.4 Don't care conditions

A don't care condition is specified either with a '-' character, or by completely omitting the entry in the

drive statement (both versions are shown in the example above). When applied to an input, the input is
unchanged from its previous value. When applied to an output, the output is ignored for testing
purposes.

9.4 Labelled drive statements

Drive statements must be labelled when two or more drive declarations would otherwise have the same
signature (8.3.7). It is not possible for triggered drive statements to have the same signature, so
triggered drive statements are never labelled.

 Page 136/172

LRM 2.7 © 2008-2021 Maia EDA

10 SCHEDULING MODEL

10.1 Introduction

This section describes an idealised scheduling model which is independent of the back-end code
generator, and whether or not the generator relies on an existing third-party simulator. There may
potentially, however, be issues with specific Verilog simulators (A4.7.5).

Maia uses a co-operative scheduling model, in which a given function remains in context until it

executes a wait, drive, trigger, or exec statement. These statements are defined as 'suspending'

statements, while all other statements are defined as non-suspending statements.

All maximally-sized blocks of non-suspending statements are guaranteed to execute atomically, in zero
simulation time, without interference from any other function. When a suspending statement is
executed the current function suspends and returns control to the scheduler, which may then schedule
future activity as a result of that statement.

The scheduler then advances to the next time at which an activity has been scheduled. The
corresponding function is then resumed, and it carries on execution until it executes a suspending
statement.

There may potentially be more than one function which is scheduled to be resumed at a given time. If
this is the case, the scheduler makes an arbitrary decision as to which of these functions to resume.
User code should not assume any given order of function execution when statement blocks in different
functions are scheduled to be executed at the same time; the statement blocks may have the desired
order of execution in one program run, but have a different order in a second run.

10.2 Threads

Maia programs are multi-threaded. The main function is entered at or before time 11, and executes in

thread 0 (the 'main' thread). New threads are created in one of two ways:

1. by execution of an exec statement. The exec statement returns immediately (in zero simulation

time), and the newly-created thread starts execution immediately. A function which is entered
by means of an exec statement is a 'Thread Function' (7.6), and may advance time as required
(10.4). Every Thread Function has a unique thread identifier (a 'thread ID').

2. trigger functions (7.6) are automatically entered when the corresponding trigger condition is
encountered. Trigger functions do not have a thread ID.

Statements which are scheduled to run at the same simulation time will execute in an arbitrary non-

deterministic order. The two report statements in Example 71, for example, both run at the same

time, in an unknown order.

1 main may be entered at time 1, rather than time 0, in order to avoid start-up races in the generated Verilog code. 'Time 1'

refers to the first step in the program's execution. If the time units are nanoseconds, and the precision is 100 ps, for example,
then 'time 1' is 0.1 ns.

 Page 137/172

LRM 2.7 © 2008-2021 Maia EDA

10.3 Program termination

A Maia program will continue execution until an exit statement is encountered, or until all threads

have completed execution.

Execution of an exit statement (from any thread) will terminate the program cleanly, together with

any threads which are currently active. Program execution will otherwise continue until all threads
(including the main thread) have terminated by executing a return statement or "falling off the

bottom". This second termination mechanism is equivalent to requiring all threads to re-join main, and

then terminating main.

10.4 Advancing time

The only Maia statements which advance time are the wait statement (6.9) and the drive statement
(9). A function which includes wait or drive statements is said to be time-consuming; all other functions
execute in zero simulation time.

The wait statement suspends execution of the calling thread for the specified time. The thread resumes
execution on completion of the wait.

When a drive statement is executed the calling thread is suspended. In most circumstances, the thread
will resume execution at the next Operating Point (OP).

10.5 Thread Functions

When a function is entered by execution of an exec statement a new instance of that function is

created, together with any local storage required by that function (including any static objects declared
within the function). This local storage is referred to as 'Thread-local storage', or TLS, and the function
itself is a 'Thread Function'. There may be multiple in-progress instances of any such Thread Function
at a given time.

A function which is not a Thread Function exists as a single instance at runtime, irrespective of the time
at which the function is called, or the thread from which it is called1. Example 108 calls f3 from two

threads:

void main() {

 int tid;

 exec f1(tid);

 wait 1.5;

 exec f2(tid);

 // f1(tid); /* ILLEGAL: f1 is a Thread Function, and must be exec'ed */

}

void f1(int& tid) {

 f3(tid); // direct call: no 'exec'

}

1 This is a limitation of the 2021.4 Verilog code generator. Recursive function calls are not supported in 2021.4 for the same
reason.

 Page 138/172

LRM 2.7 © 2008-2021 Maia EDA

void f2(int& tid) {

 f3(tid);

}

void f3(int tid) {

 report("%T: f3, in thread %d\n", _timeNow, tid); // upper-case 'T' for float

}

Example 108

This program reports:

0.1 ns: f3, in thread 1

1.6 ns: f3, in thread 2

The f3 function that is called in threads 1 and 2 is the same instance of the f3 function, and does not

have any TLS. While this is not an error, it is likely to lead to unexpected results if f3 advances time,

and this should be avoided.

Note that, in this example, execution begins at 0.1 ns. This is 'time 1', because the default time units
(ns) are used, and because the wait of 1.5 ns sets the precision to 100 ps (see 8.8). Execution may
also begin at time 0; see (10.2).

10.6 HDL signal drivers

A thread may not be created if the new thread could potentially drive an HDL signal which is already
driven in another thread. This determination is made statically, and an error is raised if necessary1. This
procedure ensures that any HDL signal which is driven by the program has only a single driver.

If a given thread is responsible for driving a clock signal (by executing drive statements), then that
thread will generate the clock waveform described by the relevant create_clock declaration (and an

error will be raised if any other thread attempts to drive the same clock signal). The waveform is
'anchored' at time 0, and not at the time at which the first drive statement is executed (in other words,
the thread synchronises to the next OP, which is at some integer multiple of the cycle time). This
ensures that all clocks which are generated by the testbench have a known relationship to each other,
which can be determined solely from the relevant create_clock declarations.

DUT-output clocks are generated by the DUT itself. Since the testbench is not responsible for driving
the clock, there is no restriction on the number of threads which can execute drive statements which
are associated with that clock. The create_clock declaration describing a DUT-output clock must

match the actual clock waveform generated by the HDL code, with a potential phase offset (in other
words, the DUT is not required to start waveform generation at time 0, or at some other integer
multiple of the cycle time). Any threads which use a DUT-output clock will synchronise to the rising
edge of that clock, and determine the phase offset relative to the create_clock declaration; this

offset is used to find the OP.

1 The compiler statically constructs a call graph to determine whether this is possible. mtv will output a dot-format call graph if
the –cg option is specified.

 Page 139/172

LRM 2.7 © 2008-2021 Maia EDA

10.7 Operating point

All user statements are executed either at program start-up, or on completion of a wait statement, or at
a time defined as an Operating Point, or 'OP'. Drive statements have an associated (potentially
defaulted) cycle time definition, and advance time on a cycle-by-cycle basis. The OP is the point at the
start of that cycle at which user statements are executed. This abstraction allows testbenches to be
written in a cycle-synchronous way:

void main() {

 // execute code at program start-up

 ...

 // this drive statement synchronises to the next OP, drives the A, B, C inputs,

 // and advances the clock, returning control to the user at the next OP. The

 // output testing is decoupled from the cycle by separate pipelined checkers

 [.C, A, B, C] -> [D, E, F];

 for(int i=0; i<100; i++) { // run for 100 clock cycles

 ... // now at an OP: user code runs here

 [.C, A, B, C] -> [D, E, F]; // drive inputs, advance one cycle, test outputs

 }

}

Example 109

For a clocked drive statement, the OP is simply the time at the start of the relevant clock definition. For
a combinatorial drive statement, the compiler determines an equivalent cycle time from the relevant
combinatorial delays (8.3.6.1). This cycle time reflects the longest combinatorial path from the signals
in the drive inputs, through to the drive outputs. The OP is the time at the start of this cycle. The
compiler will again use a default cycle time if the relevant information is not supplied in the DUT
declaration.

10.7.1 DUT output testing

The OP can be considered to be the time at which the user drives inputs to the DUT. If the output hold
and delay times are appropriately constrained (8.9.5), the DUT outputs from the previous clock edge
may also be 'manually' tested at this time, by reading and checking them. This is true when using the
default clock waveform and timing constraints, but it is not generally the case (the outputs might not,
in general, become valid until after the OP). Manual DUT output testing is discussed in 10.11 below.

The runtime therefore ignores the OP when testing DUT outputs, and instead triggers a pipelined tester
on the appropriate clock edge (see 8.5.3.2).

10.8 Drive statement execution

The procedure which is used to execute a drive statement is described in the algorithm below. The
algorithm is given for a clocked drive, but the procedure for a combinatorial drive is similar, with the
corresponding event times determined by the procedure given in (8.3.6).

The clock cycle is first divided into n slots, where slot 0 is defined as the OP. n is the number of
minimum-precision ticks in the clock cycle time (a 10ns cycle time, for example, in a testbench which
has a minimum precision of 100ps, has 100 ticks, so n is 100). An event queue which contains n slots

 Page 140/172

LRM 2.7 © 2008-2021 Maia EDA

(numbered as [0, n-1]) is first constructed for the drive statement. Each slot can contain an event for
one or more of these four operations, where the term 'signal' means a DUT input or internal signal:

• Drive the clock to 1

• Drive the clock to 0

• Drive a signal. An internal signal which is driven is forced to the requested value

• Release a signal. A release event drives an input to X, or releases a force on an internal signal

If the relevant clock has no waveform declaration, and the minimum precision is 1ns, then the default
event queue contains 10 slots. The clock rises in slot 1, and falls in slot 6.

The queue is constructed as follows:

1. The clock rising and falling edges are inserted into the event queue if the LHS of the drive

statement contains a .C directive, and that clock is to be generated by the testbench (in other

words, it is not a DUT output). If the clock has no waveform declaration, a 10ns queue is
constructed, with rising and falling edges in the slots corresponding to 1ns and 6ns, respectively

2. For each signal which is to be driven, the setup time is found from the relevant input constraint
(8.9.2). The setup may be relative to the clock rising or falling edge. This time is converted to a
slot number, and a drive event is added to that slot. If the signal has no input constraint, or an
empty setup constraint, a drive event is instead added to the slot immediately preceding the
clock rising edge event. For the default event queue, this is slot 0

3. For each signal which is to be driven, the hold time is found from the relevant input constraint,
and a release event is added to the queue, in the same way as described for setup events
above. However, there is no default hold time: if a hold time is not given, no event is added to
the queue

4. Multiple events in a given slot are unordered, and are not guaranteed to be executed in a specific

order1

5. The queue slot which contains the first event (or which would have contained the first event, if
the relevant signal had been driven) is noted as the 'first event time', or FET. For the default
event queue, if there are any events which have a default setup time, this will be slot 0

It is an error if any events are scheduled for slots outside the range [0,n-1]. This is reported as a

constraint error during compilation.

On any given cycle, a signal is driven if an expression, or a .X or .Z directive, is supplied as the drive

value (the signal is driven to all X for .X, or all Z for .Z). If the expression is instead omitted, or

supplied as a dash character (-), no drive or release event is added for the signal. In this case, the

signal simply retains the last driven value.

1 In particular, drive and release events are not ordered with respect to clock edge events when they occur in the same slot.
For a signal which is explicitly constrained with zero setup to a clock edge, the drive event may occur either before or after the
relevant clock edge (in other words, a DUT which is not timing-aware may incorrectly sample the data). The rationale is that a
DUT which relies on delta-delay ordering in order to sample a signal with zero setup is incorrectly coded, and any 'assistance'
from the testbench would be misguided.

 Page 141/172

LRM 2.7 © 2008-2021 Maia EDA

The setup event will occur after the relevant clock edge event if the setup time is negative; conversely,

the hold event (if there is one) will occur before the relevant clock edge if the hold time is negative.

At runtime, the drive statement is executed as follows:

1. The user thread is suspended and time is advanced, if necessary, to the next simulation time
which corresponds to the FET for this clock

2. The expressions which are to be assigned to the DUT inputs are sampled and the results recorded

3. The events which are scheduled for this slot are executed, in a random order

4. Time is advanced to the next slot which contains one or more events, and these events are
executed, in a random order. The DUT is driven with the data sampled in (2) above, rather than
the state of any input expressions at the current time

5. Step 4 is repeated until there are no more events in the queue

6. Time is advanced to slot n (slot 0 in the next cycle), and control is returned to the user thread

The user code therefore resumes at the OP. When the next drive statement is encountered, it is again
executed as described above. Note that:

1. The user code may execute a wait statement when it resumes. However, if the user delay

advances time beyond the next FET, a subsequent drive statement will not be able to
synchronise to the next cycle, and will instead skip one or more cycles until it can find the next
FET. In this case a run-time warning is issued (11.2)

2. For a simulation with a default event queue and default setups (or, in general, any simulation in
which slot 0 has any associated events), it is not possible to execute a wait statement at the

OP without skipping cycles as described in (1) above

3. A function may execute any number of drive statements which are associated with different
clocks:

[.C, e1, e2] -> [e3]; // .C advances CLK1, with cycle time 3.0ns

... // user code which is executed at the OP for CLK1

[e4, .C] -> [e5]; // .C advances CLK2, with cycle time 1.7ns

... // user code which is executed at the OP for CLK2

In this case, the first drive resumes user statement execution at some multiple of (n * 3.0) ns.
The second drive must then advance to an integer multiple of 1.7ns, plus the FET associated
with CLK2. The same situation arises if the first drive statement is replaced with a wait. This

means that a drive statement does not necessarily advance by a time equal to the relevant clock
cycle. In general, however, a drive statement advances by at least one complete cycle.

10.8.1 Delta-delay simulations

A delta-delay simulation will be carried out if the DUT section contains no timing constraints. In this
case, the clocks will be generated with whatever period and waveform they have been defined with,
and any DUT inputs will be driven one tick before the clock rising edge. The DUT outputs are sampled
and tested a short time after the clock rising edge.

 Page 142/172

LRM 2.7 © 2008-2021 Maia EDA

In this case, since the inputs have no hold time constraints, a waveform display will show that the

inputs are changing only in the tick before the clock edge, and are stable at all other times.

If any timing constraints are specified (against the relevant clock) then the simulation is timed. The
inputs will be driven to the required value in the relevant [tSU, tIH] interval, and will be driven to X at all
other times. The outputs are tested to confirm that they are stable and have the required value in the
[tOD, tOH] interval (where the hold is tested against the next clock edge).

10.9 Sequential drive statements

A sequential combinatorial drive statement within a user function has no clock associated with it. The
'cycle time' is derived from any supplied timing parameters; see (8.3.6.1). A sequential clocked drive
statement within a user function always has a defined clock signal.

A user function may use any defined combinatorial or clocked drives, which are all independent from

the point of view of advancing time. The main function, in this code, is an example of a user function

which uses multiple clocked and combinatorial drives:

DUT {

 module TEST(

 input CLK1, CLK2, CLK3, A, B, C, D, E, F,

 output Q1, Q2, Q3, G);

 create_clock CLK1 period 8; // default timescale (ns)

 create_clock CLK2 period 13;

 create_clock CLK3 period 18;

 D1: [CLK1, A] -> [Q1];

 D2: [CLK2, B] -> [Q2];

 D3: [CLK3, C] -> [Q3];

 // D, E, F are combinatorial inputs, driving output G, with a maximum

 // tOD of 4.5ns

 D -> G = (0.2 : 2.5)

 E -> G = (0.4 : 3.5)

 F -> G = (1.0 : 4.5)

 [D, E, F] -> [G];

}

void main() {

 var a, b, c, d, e, f;

 ... // these statements are executed at start-up

 D1: [.C, a] -> [d]; // advance one CLK1 waveform, CLK2/CLK3 unaffected

 ... // these statements are executed at 8ns

 D2: [.C, b] -> [e]; // advance one CLK2 waveform, CLK1/CLK3 unaffected

 ... // these statements are executed at 8+13 = 21ns

 D3: [.C, c] -> [f]; // advance one CLK3 waveform, CLK1/CLK2 unaffected

 ... // these statements are executed at 21+18 = 39ns

 [a, b, c] -> [d]; // advance 9ns, CLK1/CLK2/CLK3 unaffected

 ... // these statements are executed at 39+9 = 48ns

 wait 5; // advance 5ns, CLK1/CLK2/CLK3 unaffected

 ... // these statements are executed at 48+5 = 53ns

 report("time is %3.1f\n", _timeNow); // displays 'time is 53.0'

}

Example 110

 Page 143/172

LRM 2.7 © 2008-2021 Maia EDA

10.10 Triggered drive statements

A trigger function always has one clock associated with it, and may use only the single triggered drive
statement associated with the function. The purpose of a triggered drive statement is to test a
sequence of DUT outputs after a trigger condition has been detected; the statement cannot be used to
drive inputs to the DUT.

This code is an example of the use of a trigger function:

DUT {

 module Count4USLR // up counter with synchronous load

 (input C, SLOAD,

 input [3:0] D,

 output [3:0] Q);

 create_clock C -period 8 -waveform {2, 5};

 @trigFunction [C] -> [Q];

}

void main() {

 trigger trigFunctionA() when all Q == 9;

 ...

}

@trigFunction() {

 ->[10];

 ->[11];

 ->[12];

}

Example 111

The trigger condition can, in general, be arbitrary, and so is sampled on the rising edge of the
associated clock (C). In this case, the condition is when all Q == 9, and trigFunction starts

execution whenever this condition is detected (6.7).

trigFunction is entered at the OP and, in this example, the first drive statement (->[10]) is

executed immediately. The test is carried out as for sequential drive statements: the relevant clock
edge is identified from any constraints, and a pipelined checker is started on that clock edge. In this
example, Q is unconstrained, and the test is therefore carried out shortly after the C rising edge.

10.11 Manual DUT testing at the operating point

The purpose of a drive statement is to automate the driving of DUT inputs in preparation for a test, and
the sampling and testing of DUT outputs. However, under some circumstances, these processes may
also be carried out manually, if required, at an OP. Whether or not a manual test is possible depends
on the specific timing parameters required, as described below. Note that manual testing is always
possible when default timing is used (in other words, for untimed delta-delay simulations).

The code below shows an example of a manual DUT test. This code uses a drive statement to generate
a clock waveform for a D-type F/F, but explicitly tests the Q output, rather than testing it as part of a

drive statement:

DUT {

 Page 144/172

LRM 2.7 © 2008-2021 Maia EDA

 module DType(input D, CLK, output Q);

 [CLK]; // just drive the CLK input; don't test any outputs

 ...declare the timing parameters: CLK period and waveform, tSU, and tCO

}

void main() {

 // D, CLK, and Q are external variables, and may be read or written normally

 D = 1; // will be correctly driven to meet any setup spec

 [.C]; // advance one CLK period to the next operating point

 if(Q == 1) // manual sample may or may not be correct: see (10.11.2)

 _passCount++;

 else

 _failCount++;

}

Example 112

10.11.1 Input driving

The DUT inputs may always be driven at an OP (or, in general, at any time before the execution of a
drive statement), and the inputs are guaranteed to meet any specified setup parameters. This follows
from the definition of a clock waveform (8.5.3). The compiler will report an error if the clock waveform
does not meet this requirement.

10.11.2 Output testing

Clocked DUT outputs are not guaranteed to be stable at an OP. For a clocked drive, if the setup times
are relatively large compared to the clock period, and the output delay is also large compared to the
clock period, then it is possible that the outputs will become valid after the next OP. Consider this
example code, and the corresponding clock waveform:

DUT {

 module TEST(input CLK, A, output B)

 create_clock CLK period 10 waveform { 3.5 7 } // default timescale (ns)

 A -> posedge CLK = (3.5 : -1.0) // tSU is 3.5ns

 posedge CLK -> B = (1.0 : 7.5) // tCO is 7.5ns

}

Example 113

These are valid declarations, but the sum of the setup to the clock, and the output delay from the
clock, is 11.0ns, while the total clock period is only 10.0 ns:

0 2 4 6 8 10

CLK

A

12

B

This is not a problem for a drive statement, since the drive statement pipelines the output test.

However, when carrying out manual testing, the OP occurs at 10.0 ns, which is before B is guaranteed

to be valid.

 Page 145/172

LRM 2.7 © 2008-2021 Maia EDA

If a manual test of the DUT outputs is necessary in these circumstances, then it may be possible to

insert a wait statement at the OP, to delay for 1 ns. However, in this case, the delay advances beyond

the next FET (10.8), which will result in a run-time warning being issued.

10.11.3 Summary of manual testing requirements

The DUT outputs, and the _vectorCount, _passCount, and _failCount variables, may always be

'correctly' read at an OP if this condition is satisfied:

• For all outputs which have synchronous output constraints, the specified tCO occurs before the

end of the defined clock waveform.

This condition is clearly not satisfied for the example in (10.11.2), since the output has a tCO of 7.5ns,

but the time available from the rising clock edge to the end of the waveform is only 6.5ns.

If this condition is not satisfied, then a drive statement will use a pipelined test to sample the output,
and to update _vectorCount, _passCount, and _failCount, after the OP. The user does not have

the ability to do this by executing code at the OP, and so will potentially sample incorrect DUT data.
However, it may be possible to wait until the data is expected to be valid, and sample it at that time, as
long as the delay does not advance beyond the next FET.

 Page 146/172

LRM 2.7 © 2008-2021 Maia EDA

11 RUN-TIME ERROR CHECKING

There are a number of program errors which cannot be detected until run-time, and which are
described below. If a run-time error is detected, an error counter (_errorCount) is incremented, and

an error message is added to the logfile. The program will terminate when the run-time error count
reaches the value specified as the rte parameter to either mtv or rtv (A4.5). This parameter defaults

to 1, so the default behaviour is to abort program execution when a run-time error is detected. Under
some circumstances, it may be desirable and possible to continue execution; if this is the case, rte

may be given a higher value.

Note that programmer-defined assertion errors are treated identically to run-time errors, and simply
increase the error counter; the program will not abort until the rte limit has been reached.

Run-time errors should not be confused with DUT errors. A run-time error is likely to be the result of a
programming error and is, as such, 'unexpected'; run-time errors should therefore normally result in a
program abort. DUT errors, on the other hand, are (potentially) expected errors.

Run-time errors and warnings cannot be internationalised in 2021.4.

11.1 Run-time errors

11.1.1 Array indexing errors

R100 All array accesses are checked at runtime. Any access outside the declared range of the array is

converted into an access to location 0, and an error is reported.

11.1.2 Bitslice indexing errors

R109 Bitslice indexes are checked at runtime. Any access outside the declared range of the object is

ignored, and an error is reported.

11.1.3 Checker Pipeline size errors

R102 An error is issued if the maximum size of a checker pipeline was specified in a DUT declaration
(8.5.4), and a drive statement subsequently attempts to access a pipeline level beyond this
maximum size. If this happens, the first pipeline level is instead read or written.

11.1.4 Checker Pipeline over-write errors

R103 A drive statement which specifies a pipeline level writes the expected data into that level of an
internal checker pipeline. An error will be issued if a subsequent drive statement over-writes this
expected data (9.2.4.2).

 Page 147/172

LRM 2.7 © 2008-2021 Maia EDA

11.1.5 Trigger over-run

R101 There may only ever be one executing instance of a given trigger function. An error will be
reported if the conditions which led to the initiation of the trigger function again become true
while the trigger function is already running. If this happens, the new start condition is ignored.

11.1.6 Last value pipeline errors

R110 When the history of an object is read with the 'last attribute (4.5.4.6) with a variable clock

level, the clock level must evaluate to an integer which is in the inclusive range [1,plevel],
where plevel is the declared pipeline level for that clock (8.5.4). If the clock level is outside this
range an error will be reported, and an all-X value will be returned.

11.1.7 Filesystem I/O errors

R106 File system I/O error, with no system error message

R107 File system I/O error, with a system error message

11.2 Run-time warnings

All warnings are related to potential error conditions with DUT clocks or DUT timing.

W300 Metavalue on DUT-output clock

W301 Incorrect period on DUT-output clock

W303 Waiting for DUT-output clock to start running

W304 FET missed; skipped one or more cycles to re-synchronise

 Page 148/172

LRM 2.7 © 2008-2021 Maia EDA

12 PREPROCESSOR

12.1 Introduction

The translation of a source file is carried out in two distinct stages. In the first, a preprocessor carries
out a number of simple textual conversions on the source file. The preprocessor output is then used as
input to the second stage of translation. This second stage is conventionally known as "compilation".

Translation is split into two stages for compatibility with other C-like languages (the Maia preprocessor
is, for most intents and purposes, identical to the C preprocessor1). The primary purpose of pre-
processing is to allow a macro processor to be run as a separate stage before compilation. This macro
processor allows, among other things, the definition and expansion of macros, and the inclusion of
additional source files. However, the preprocessor also includes other functionality which is not directly
related to the macro processing functionality.

This chapter documents the functionality of the Maia preprocessor, and the macro processing language
(MPL) syntax.

The preprocessor is responsible for validating UTF-8 input, replacing trigraph and digraph character
sequences, removing escaped LF characters ("line splicing"), comment removal, and carrying out macro
operations in the MPL. The preprocessor stage is not required if all the following conditions are
satisfied:

1. The source character set is ASCII (in other words, the source contains no multi-byte UTF-8
characters)

2. The source contains no trigraphs or digraphs

3. The source contains no escaped newlines

4. The source contains no operations in the MPL

5. The source contains no comments

The preprocessor has only minimal understanding of the lexical structure of a Maia program. It
understands the form of strings, comments, constants, and identifiers, but does not otherwise carry out
any tokenisation which is Maia-specific. It can therefore, in many situations, be used as a general-
purpose textual preprocessor. However, the preprocessor emits line directives (12.3.3) in its output, to
allow downstream tools to identify the current source file, and to keep track of the current line number
in that file. These tools must therefore be capable of either processing, or ignoring, these directives.

12.2 Preprocessor translation phases

The preprocessor carries out textual translation of the source file. This translation is split into a number
of phases, which are carried out in the order defined by the paragraph headings below. The first 9 of

1 The primary differences are that the Maia preprocessor specifies UTF-8 as the input character set, and that there is no
specific 'tokenisation' phase.

 Page 149/172

LRM 2.7 © 2008-2021 Maia EDA

these phases primarily carry out a number of simple character substitutions, UTF-8 validation, line
concatenation, and comment removal.

The resulting source is then examined for operations in the MPL. These operations include directive
execution, which is carried out in phase 10, and macro expansion, which is carried out in phase 11.

Conceptually, each of these phases is carried out separately, over the entire source file, before the next
phase is started, with the single exception noted in step 2 of 12.3.1.1. However, the preprocessor may
carry out the translation in any way that preserves the ordering defined by the paragraphs below. In
particular, it is possible to carry out all pre-processing in a "line filter", operating only on the current
line of input. When operating in this way, the preprocessor reads a single logical line of input (one or
more physical lines separated by escaped newline characters), processes that line and then, if
necessary, outputs that line.

Three of the initial transformation phases are optional1. These phases are:

1. Trigraph replacement (12.2.1)

2. Digraph replacement (12.2.2)

3. Whitespace compression (12.2.9)

12.2.1 Trigraph replacement

The trigraphs are the 3-character sequences listed in Table 21. If trigraph processing is enabled, these
sequences are replaced by their single-character equivalent2.

Trigraph Equivalent
??= #

??([

??/ \

??)]

??' ^

??< {

??! |

??> }

??- ~

Table 21: trigraphs

When replacement is enabled, all trigraph sequences are replaced, irrespective of context; in particular,
trigraphs (and digraphs) within strings are also replaced. A trigraph within a string may be preserved by
replacing a question mark with an escaped question mark:

report("(???)"); // produces '(?]'

report("(??\?)"); // produces '(???)'

1 mtv 2021.4 carries out trigraph and digraph replacement, and does not compress whitespace. It does not currently provide a
mechanism to disable replacement, or to enable compression.

2 Trigraphs and digraphs may be required when, for example, a keyboard does not provide the equivalent character, or when a
text editor reserves an equivalent character.

 Page 150/172

LRM 2.7 © 2008-2021 Maia EDA

12.2.2 Digraph replacement

The digraphs are two-character sequences which are a more compact equivalent of the most commonly
used trigraphs, and are listed in Table 22. If digraph processing is enabled, these sequences are
replaced by their single-character equivalent.

Digraph Equivalent
<: [

:>]

<% {

%> }

%: #

%:%: ##

Table 22: digraphs

12.2.3 Line terminator conversion

The code points and code point combinations listed in Table 23 are recognised as a single line
terminator.

Code point Name
U+000A LF: line feed ("newline")
U+000C FF: form feed
U+000D, U+000A CR followed by LF
U+000D CR: carriage return
U+0085 NEL: next line
U+2028 LS: Line separator
U+2029 PS: Paragraph separator

Table 23: line terminators

All these code points are converted into a \n character (LF, U+000A). The code point sequence

U+000D, U+000A is tested before testing for a single U+000D; both are converted into a single LF
character.

Any reference to a "line terminator" refers to the one or more code points which are used to terminate
a user input line either during, or prior to, this phase. Any reference to a "newline" or to "LF" after this
phase has completed refers to a single \n (LF, U+000A) character.

12.2.4 Whitespace conversion

The code points listed in Table 24 are recognised as whitespace.

One-byte code points
U+0009 U+000B U+0020

Two-byte code points
U+00A0

Three-byte code points

U+1680 U+180E U+2000 U+2001

U+2002 U+2003 U+2004 U+2005

U+2006 U+2007 U+2008 U+2009

 Page 151/172

LRM 2.7 © 2008-2021 Maia EDA

U+200A U+202F U+205F U+3000

Table 24: whitespace

All these code points, with the exception of HT ("horizontal tab", U+0009), are converted into a SP
character (space, U+0020). Note that newline is not classified as whitespace. Any reference to
"whitespace" after this phase has completed refers only to one or more consecutive HT or SP
characters.

On completion of this phase, all line terminator and whitespace characters in the source will have been
replaced with either LF (U+000A), SP (U+0020), or HT (U+0009).

12.2.5 UTF-8 validation

Characters are now checked for valid UTF-8 encoding. Any character with an invalid encoding1 is
rejected, with the exception that the two-byte sequence 0xC0, 0x80 is accepted as an overlong NUL2.

12.2.6 Line continuation

Escaped newlines (a LF immediately preceded by a \ (U+005C) character) are stripped from the input,

merging the current "physical" line with the next line to form a single "logical" line. A warning is issued
if a \ character is the last non-whitespace character on the line, and is followed by one or more

whitespace characters.

Line continuation is required only when it is necessary to split a preprocessor directive, or a string, over
multiple physical lines3.

12.2.7 String preservation

Strings are arbitrary character sequences which are enclosed in double quotation marks (", U+0022).

Strings are recognised during this phase and are preserved from further preprocessor transformations;
they are passed unmodified to the output. The entire string must appear on a single logical line of
input; an error is raised if the string has no closing quotation mark on the current logical line4.

Note that the filename argument to the #include directive may be specified as a string (12.3.2). This

string is treated in the same way as any other string, and is protected from further transformation5.

1 Examples of invalid characters are characters which have an invalid byte count, or which have an overlong encoding, or
which code more than 21 bits, or which have an invalid continuation byte.

2 This exception is known as 'modified UTF-8'; it allows a NUL character to be placed into a string.

3 The compiler itself is "free-form" and never requires input to be split over multiple lines using an escaped LF. "Line splicing" is
relevant only to the preprocessor.

4 Strings may be continued over multiple lines either by inserting an escaped LF within the string itself, or by placing adjacent
strings on separate lines of input. In the former case, the preprocessor removes the escaped LF; in the latter, the compiler
concatenates the adjacent strings.

5 For the C preprocessor, the string argument is treated as a special case and may later be macro-expanded.

 Page 152/172

LRM 2.7 © 2008-2021 Maia EDA

12.2.8 Comments

Both block and line comments are replaced with a single SP character.

12.2.9 Whitespace compression

If whitespace compression is enabled, the preprocessor replaces multiple consecutive SP characters
with a single SP character.

12.2.10 Directive processing

Directives are instructions in the MPL, and are preceded by a # (U+0023) character. Directives are

recognised and executed in this phase; see 12.3.

Phases 10 and 11 require partial tokenisation of the input in order to find identifiers, and to evaluate
any arithmetic expressions which control conditional inclusion. However, this tokenisation is not
required if there are no directives in the source, and is not treated as a separate phase.

12.2.11 Macro expansion

In the final phase, macros which have previously been defined by a #define directive are expanded;

see 12.4. This phase differs from the previous phases in that it cannot be carried out in a single pass on
the current line of input. Text which has been macro-expanded is rescanned until no more expansion is
possible; this may require multiple passes over part or all of the current input line.

12.3 Preprocessor directives

If the first non-whitespace character on a line is # (U+0023), then the line is potentially a preprocessor

directive. Any whitespace after the # character is ignored, and the remainder of the line is processed as

a directive1, unless one of the following three conditions is true:

• If the next character is a LF, this line is ignored and is not copied to the output (in other words, it
is stripped from the input). This is a null directive;

• If the next character is ((U+0028), then the line is not considered to be a directive2 (and is

therefore subject to macro expansion in phase 11);

• If the next 6 characters are pragma, followed by whitespace, then the entire line is protected

from further transformation and is passed unmodified to the output3. This is a pragma directive;
see 12.7.

1 A directive must therefore appear on a single logical line of input. If it is necessary to split a directive over multiple physical
lines, it can be continued either by a block comment which extends past the end of the line, or by escaping the line terminators
with a \ character (12.2.6).

2 #(introduces a module parameter list in a module declaration; see 8.2.1.

3 Macro expansion therefore does not occur inside a #pragma directive.

 Page 153/172

LRM 2.7 © 2008-2021 Maia EDA

The line is otherwise required to be a pp-directive.

Syntax

pp-directive :

 pp-cond-inclusion

 pp-control \n

pp-control :

 pp-include

 pp-line

 pp-warning

 pp-error

 pp-define

 pp-undefine

12.3.1 Conditional inclusion directives

A directive which has the form of one of the following

 # ifdef pp-identifier ...

 # ifndef pp-identifier ...

 # if pp-condition ...

introduces a conditional inclusion directive (a pp-cond-inclusion). The conditional inclusion directives
allow a portion of the source file (a block, or pp-cond-block) to be conditionally included or excluded
from pre-processing, according to the evaluation of a condition. The condition is evaluated as follows:

1. for the #ifdef directive, the condition evaluates to true if pp-identifier is currently defined as a

macro name (in other words, a definition is currently in scope), and false otherwise. This
condition is equivalent to #if defined pp-identifier.

2. for the #ifndef directive, the condition evaluates to true if pp-identifier is not currently defined

as a macro name, and false otherwise. This condition is equivalent to #if !defined pp-

identifier.

3. for the #if and #elif directives, pp-condition is evaluated as an arithmetic constant

expression, using the procedure defined in 12.3.1.1. The condition evaluates to false if the
expression evaluates to 0, and true otherwise.

Each directive in a conditional inclusion directive (a pp-cond-inclusion) is checked in order; only the
block associated with the first condition that evaluates true is included. If none of the conditions
evaluates to true, and there is a #else branch, the block associated with the #else branch is

included. If there is no #else branch, none of the blocks associated with the pp-cond-inclusion is

included.

If pp-cond-block is excluded as a result of a condition evaluation, the preprocessor carries on analysing
the text in the excluded pp-cond-block until it finds the matching pp-elif-part, pp-else-part, or pp-endif-
part. The preprocessor is required to complete processing through to phase 10, and so will potentially
report any errors detected in these phases, despite the fact that the block has been excluded. However,
the preprocessor will not generate any output for these lines.

 Page 154/172

LRM 2.7 © 2008-2021 Maia EDA

Syntax

pp-cond-inclusion :

 pp-if-part pp-elif-partsopt pp-else-partopt pp-endif-part

pp-if-part :

 # ifdef pp-identifier \n pp-cond-blockopt

 # ifndef pp-identifier \n pp-cond-blockopt

 # if pp-condition \n pp-cond-blockopt

pp-elif-parts :

 pp-elif-parts pp-elif-part

pp-elif-part :

 # elif pp-condition \n pp-cond-blockopt

pp-else-part :

 # else \n pp-cond-blockopt

pp-endif-part :

 # endif \n

pp-cond-block :

 pp-cond-block pp-cond-block-part

pp-cond-block-part :

 pp-cond-inclusion

 pp-control \n

 text-line \n

12.3.1.1 Condition evaluation

pp-condition is evaluated in four steps, in the order defined by the numbered items below.

1. The expression is examined for unary operators of the form

defined pp-identifier

or

defined (pp-identifier)

this operator evaluates to 1 if pp-identifier is currently defined as a macro name, and 0

otherwise.

2. Any macro invocations in pp-condition are expanded, using the procedure defined in 12.4
below. This replacement occurs before phase 11, and is the only violation of the evaluation-
order rules defined in 12.21.

3. Any remaining pp-identifier tokens in pp-condition are replaced with 0.

1 The C preprocessor also allows the argument of a #include directive to be macro-expanded before source file inclusion is

carried out. This feature is not supported. Allowing this exception would not add any functionality that cannot easily be
achieved while keeping strict phase ordering.

 Page 155/172

LRM 2.7 © 2008-2021 Maia EDA

4. The resulting expression should contain only whitespace, parentheses (and), integer

constants in the form of a Cinteger (2.7.1), and the operators defined in Table 25. The
operators are listed in precedence order, with the highest precedence operators at the top of
the table, and operators of equal precedence on the same row of the table. These operators are
a subset of the full set of Maia operators, with the same precedence and associativity.

The expression is evaluated using 64-bit precision, and an error is raised if any Cinteger
constants cannot be represented in 64 bits.

On completion, the pp-condition evaluates to false if the expression evaluates to zero, and true

otherwise.

 Operator Associativity

Unary ! ~ + - right to left

Multiplicative * / % left to right

Additive + - left to right

Shift << >> left to right

Comparison < <= > >= left to right

Equality == != left to right

Binary AND & left to right

Binary XOR ^ left to right

Binary OR | left to right

Logical AND && and left to right

Logical OR || or left to right

Table 25: MPL operators

12.3.2 include directives

The include directive inserts the contents of the named file into the current source file, at the point at
which the include directive appears. A line directive is also inserted prior to the first line of the included
file, and after the last line of the included file, to allow the compiler to correctly track source file
locations. There is no practical limit to the level at which include directives may be nested; the current
source file is always closed before inserting the included file, and is re-opened when the included file
has been processed and closed.

The specified filename may be either a rooted absolute filename, or a relative filename. When the

"filename" syntax is used, relative filenames are searched for in a location relative to the current

source file. If the required file is not found in this location, it is searched for in the same directories
which are searched for the <filename> syntax.

The <filename> syntax is used when searching for system files. No system file directories are

specified for mtv 2021.4, and <filename> is treated identically to "filename".

Syntax

pp-include :

 # include <filename>

 # include "filename"

 Page 156/172

LRM 2.7 © 2008-2021 Maia EDA

12.3.3 Line directives

A line directive may be used to change the preprocessor's record of the current line number and,
optionally, the current filename. This directive might be of use, for example, for external tools which
themselves generate or process source code. The preprocessor also generates line directives in its own
output; the compiler uses this information when generating warnings and errors.

The line number is supplied as line-number, which should be a decimal integer. The preprocessor will
restart line numbering such that the next input line after this directive will be considered to have this
line number.

The filename is optional; if it is not provided, the current filename remains unchanged.

Syntax

pp-line :

 # line line-number "filename"opt

line-number : pp-integer

12.3.4 Warning and error directives

The preprocessor issues a warning when it encounters a warning directive, and an error when it
encounters an error directive. If warning-text or error-text is present, it is copied verbatim to the
warning or error output, respectively.

Syntax

pp-warning :

 # warning warning-textopt

pp-error :

 # error error-textopt

12.3.5 define directives

12.3.5.1 Introduction

A macro definition associates the specified replacement text (or "macro body") with an identifier (the

"macro name"). There is a single namespace for macro names1. The identifiers defined, and, and or

may not be used as macro names.

The scope of this association, or macro definition, lasts until a corresponding #undef directive for the

same macro name, or until pre-processing completes if no #undef directive is found. The #undef

directive need not occur in the same source file.

Within the scope of a macro definition, any valid invocation of the macro is replaced by the
corresponding replacement text during phase 11 (see 12.4 below). Whitespace surrounding the
replacement text is not significant, and is removed before the replacement occurs.

1 It is therefore not possible to define an object-like and a function-like macro with the same name, or to define multiple
function-like macros with the same name, even if they have different numbers of arguments.

 Page 157/172

LRM 2.7 © 2008-2021 Maia EDA

The replacement text may be empty; in this case, the macro invocation is simply removed from the

output during the replacement phase.

Syntax

pp-define :

 object-like-macro-defn

 function-like-macro-defn

object-like-macro-defn :

 # define macro-name replacement-text

function-like-macro-defn :

 # define macro-name-lparen formal-param-list) replacement-text

macro-name : pp-identifier

formal-param-list :

 formal-param

 formal-param-list , formal-param

formal-param : pp-identifier

macro-name-lparen :: {pp-identifier}(

replacement-text :: .*

12.3.5.2 Object-like macros

A directive of the form

define macro-name replacement-text \n

defines an object-like macro with name macro-name, and with associated replacement text
replacement-text. Subsequent occurrences of the macro name within the scope of the definition are
replaced with the associated replacement text during phase 11; see 12.4 below.

12.3.5.3 Function-like macros

A directive of the form

define macro-name-lparen formal-param-list) replacement-text \n

defines a function-like macro. A function-like macro definition is syntactically similar to a function
definition. The macro name is given by macro-name-lparen, which is the macro name, immediately
followed by a (character, with no intervening whitespace. If there is whitespace between the macro

name and the (character, the directive is instead interpreted as an object-like macro definition:

#define foo bar1 bar2 // object-like: 'foo' is replaced with 'bar1 bar2' in phase 11

// function-like: 'a(1,2)' is replaced with '((1)+(2))' in phase 11

#define a(x, y) ((x)+(y))

// object-like: 'b(1,2)' is replaced with '(x, y) ((x)+(y))(1,2)' in phase 11

#define b (x, y) ((x)+(y))

Example 114

 Page 158/172

LRM 2.7 © 2008-2021 Maia EDA

Within the definition, an optional comma-separated list of identifiers (formal-param-list) names the
"formal parameters" to the macro. The scope of a formal parameter lasts from its introduction in the
parameter list to the end of the macro definition (in other words, to the newline which terminates the
current logical line). The formal parameter names must be unique within the macro definition.

Subsequent occurrences of the macro name, when within the scope of the definition and when followed
by a list of actual parameters enclosed in parentheses, are replaced with the associated replacement
text during phase 11; see 12.4 below.

12.3.5.4 Macro redefinition

Within the scope of a macro definition, an object-like macro name may be redefined only if the
replacement is also an object-like macro, and the replacement text (including any whitespace inside the
replacement text) is identical. A function-like macro may be redefined only if the replacement is a
function-like macro with the same number of parameters, and the parameters and replacement text
(including any whitespace inside the replacement text) are identical.

12.3.6 undef directive

If pp-identifier is currently defined as a macro, #undef pp-identifier will remove that definition.

The directive is ignored if pp-identifier is not currently defined as a macro.

Syntax

pp-undefine :

 # undef pp-identifier

12.4 Macro expansion

Macro expansion takes place in phase 11. The source is tokenised (12.5) to find any occurrences of a
pp-identifier which is an in-scope macro name. The macro invocation is then replaced by the
corresponding replacement text, subject to the constraints described in this section.

12.4.1 Self-referential macros

A macro may not, directly or indirectly, reference itself. If a macro invocation is found with the same
name as a macro which is currently being replaced, then the invocation is ignored and is not expanded.
In general, when the preprocessor encounters a pp-identifier which has previously been defined as a
macro name, it may already be in the process of recursively expanding a stack of pp-identifiers. The
current pp-identifier is not expanded if it appears anywhere in this stack. This is not treated as an error
condition.

#define FOO BAR

#define BAR FOO

#define A(x, y) BAR

BAR // 2-level expansion, but stops after 1 level; outputs FOO

A(1,2) // 3-level expansion, but stops after 2 levels; outputs FOO

Example 115

 Page 159/172

LRM 2.7 © 2008-2021 Maia EDA

12.4.2 Object-like macro expansion

A pp-identifier which is currently defined as an object-like macro is replaced with the corresponding
replacement text1, unless the preprocessor is currently replacing another instance of the macro named
by pp-identifier (12.4.1).

When replacement of the pp-identifier has completed, the scan process restarts at the first character of
the replacement text. The replacement text may therefore contain further complete or partial
invocations of object- or function-like macros, and these invocations are themselves replaced, until no
further replacements are possible.

#define FOO BAR(1, // 'FOO' expands to a partial invocation of 'BAR'

#define BAR(x, y) 2*x+y

FOO

 3) // eventually expands to '2*1+3'

Example 116

12.4.3 Function-like macro expansion

If the preprocessor identifies a pp-identifier which is currently defined as a function-like macro, it
carries on to locate the next character which is not whitespace and which is not a newline. If this
character is (, the identifier is treated as an invocation of a function-like macro; it is otherwise ignored,

and copied to the output without modification.

The text between the outermost pair of matching parentheses following the macro name forms the
macro argument list (the "actual parameters"). It is an error if the source does not contain a closing
parenthesis after the argument list.

Individual parameters are separated by a comma character, unless that comma character is enclosed
within a pair of parentheses which are not the outer-most pair of parentheses2. The number of
arguments (including empty arguments) must match the number of formal parameters in the macro
definition3. Whitespace before or after an argument is not significant, and is not substituted into the
replacement text. If an argument is not present, or is composed entirely of whitespace, then it is
considered to be an "empty" argument, and the corresponding formal parameter is omitted from the
expanded replacement text.

Within the text forming an invocation of a function-like macro, any newline characters following the
macro name are treated as whitespace. An invocation of a function-like macro may therefore appear on
more than one logical line of source.

#define A(x) x+y

A(1) // expands to '1+y'

A // not a macro invocation; the preprocessor outputs 'A'

A() // an invocation of 'A' with one empty argument; preprocessor outputs '+y'

A(1,2) // an error: an invocation of 'A' requires exactly one argument

1 Strings and comments are processed in phases 7 and 8, respectively. Macro expansion therefore does not occur in either
strings or comments.

2 An argument may therefore contain matched pairs of parentheses, but not unmatched parentheses.

3 2021.4 does not support variable argument lists.

 Page 160/172

LRM 2.7 © 2008-2021 Maia EDA

#define G(x,y) x+y

1G(,)2 // 2 empty arguments; preprocessor expands G to '+', and outputs '1+2'(1)

G(,2) // preprocessor outputs '+2'

G(1,) // preprocessor outputs '1+'

G(1,

 2) // preprocessor outputs '1+2'

G((1,2),3) // preprocessor outputs '(1,2)+3'

Example 117

12.4.3.1 Argument substitution

The replacement text is scanned for occurrences of the macro's formal arguments. If a formal
argument is found and is preceded by a # character, the corresponding actual argument is stringified;

the result is then substituted into the replacement text in place of the formal argument and the
preceding # character (12.4.3.2).

Otherwise, the actual argument is macro-expanded, and is then substituted into the replacement text in
place of the formal argument (this is known as argument prescan). This substitution is carried out
recursively, in the same way as for any other expansion; however, it is only the argument itself which is
expanded (the substitution process will not attempt to read any text beyond the comma character or
closing parenthesis which terminates the argument).

When argument substitution has completed, the entire replacement text is scanned for further

replacements. This process continues until no more expansion is possible.

#define E D

#define C(x,y) [x+y]

#define D C(1,2)

#define F(a,b) a+#b

// the first 'E' in this invocation is macro-substituted; the second is stringified.

// the preprocessor eventually outputs '[1+2]+"E"'

F(E, E)

Example 118

12.4.3.2 The # operator

When a formal parameter in the replacement text is preceded by a # character the corresponding

actual is not macro-expanded, and is instead enclosed in double-quote (", U+0022) characters before

substitution into the replacement text. Leading and trailing whitespace around the actual argument is
ignored.

The stringified actual is not subject to further macro replacement.

#define FOO BAR

#define G(a) #a

G(FOO) // preprocessor outputs '"FOO"', not '"BAR"'

#define TEST(expr) \

 do { \

1 The C preprocessor parses 1G as a "preprocessing number", and so does not recognise a macro in this case; it instead

outputs 1G(,)2

 Page 161/172

LRM 2.7 © 2008-2021 Maia EDA

 if(!(expr)) \

 report("test " #expr " failed\n"); \

 } while(0)

// this invocation is replaced by:

// do { if(!(a+b) report("test " "a+b" " failed\n"); } while(0);

TEST

 (a+b);

Example 119

12.5 Tokenisation

The preprocessor has no specific tokenisation phase. However, tokenisation is required during phases

10 and 11, for the following reasons:

1. Macro names must be identifiers (a pp-identifier). A pp-identifier is therefore required as the
operand of the #ifdef, #ifndef, and #undef directives, and as the operand of the defined

operator. During phase 11, all occurrences of a pp-identifier are compared against macro names
which are currently in scope.

2. Macro formal parameters must be a pp-identifier.

3. The controlling expression of the #if and #elif directives (12.3.1) must be evaluated as a

constant expression.

In these contexts, the preprocessor classifies the remaining unprotected1 input into Vinteger tokens,
Cinteger tokens, pp-identifier tokens, MPL operator tokens, and punctuator tokens2, where:

i. A Vinteger is a preprocessor Verilog-style integer, and is defined identically to a Maia Vinteger

(2.7.2);

ii. A Cinteger is a preprocessor C-style integer, and is defined identically to a Maia Cinteger
(2.7.1);

iii. A pp-identifier is a preprocessor identifier, and is defined identically to a Maia identifier (2.5);

iv. The MPL operators are the operators defined in Table 25, together with parentheses (and);

v. A punctuator is a minimal-length sequence of characters which cannot be classified as one of
the other types above.

1 Protected input includes strings and pragma directives.

2 The preprocessor does not identify floating constants (2.7.3) in 2021.4. Any part of a floating constant which has the same
form as an identifier is therefore subject to macro expansion.

 Page 162/172

LRM 2.7 © 2008-2021 Maia EDA

12.5.1 Preprocessor Identifiers

A pp-identifier is a preprocessor identifier, and is defined identically to a Maia identifier (2.5):

Syntax

pp-simple_identifier :: [{ident-alpha}_][{ident_alpha}_0-9]*

pp-extended_identifier :: \\[^\n]+\\

ident-alpha ::

 [U+0061-U+007A] | [U+0041-U+005A] |

 [U+0080-U+0084] | [U+0086-U+2027] | [U+202A-U+10FFFF]

pp-identifier :

 pp-simple_identifier

 pp-extended_identifier

12.5.2 constant expression evaluation

The controlling expression of the #if directive is evaluated as a constant expression (12.3.1.1). The

expression must contain only whitespace, parentheses (and), the defined operator, pp-identifiers,

Cintegers, and the operators defined in Table 25.

12.6 Predefined macro names

The following macro names are predefined:

Name Value

__MTV__ 1

__MAIA__ 1

__MTV_VERSION__ The mtv compiler version, as a 32-bit integer, in the same format as the

predefined _version variable (2.9). __MTV_VERSION__ currently has the

same value as _version, but this is not guaranteed.

__MAIA_VERSION__ Currently identical to __MTV_VERSION__

__VHDL_TARGET__ Will be set to 1 if the code generator is producing VHDL output, or
undefined otherwise

__VERILOG_TARGET__ Will be set to 1 if the code generator is producing Verilog output, or
undefined otherwise

__MSWINDOWS__ Will be set to 1 if running on Windows, or undefined otherwise

__UNIX__ Will be set to 1 if running on a Unix-like system, or undefined otherwise

__FILE__ The current source file name, as a string

__LINE__ The current source file line number, as a decimal integer

__DATE__ The compilation date, as a string in the format "mmm dd yyyy" (for
example, "Apr 22 2021")

__TIME__ The compilation time, as a string in the format "hh:mm:ss" (for example,
"17:20:56")

Table 26: predefined macro names

 Page 163/172

LRM 2.7 © 2008-2021 Maia EDA

12.7 Pragma directives

Any directive of the form #pragma is ignored by the preprocessor, and is copied directly to the output.

The Maia pragma directives are therefore handled by the compiler, and not by the preprocessor; they
are, however, documented here for clarity. The supported pragmas are:

#pragma _DefaultWordSize n

i) Sets the size of implicit variables, and variables declared using the int keyword, to n bits.

Unsized integer constants are also scanned to the number of bits specified by
_DefaultWordSize. n may be any value from 1 up to a compiler determined maximum,

which will be at least 224. _DefaultWordSize itself has a default value of 32.

#pragma _Implicits n

Enables (n = 1) or disables (n = 0) the use of implicit variables (variables which auto-declare

themselves on first use). Implicits are disabled by default.

#pragma _StrictChecking n

Sets the level of static type checking which is carried out during compilation; see (3.1). Level 0
defines a level of weak checking; this is strengthened as n is increased. The default level is 1.

The _Implicits, _StrictChecking and _DefaultWordSize pragmas are program-wide, and

should appear once in the source code, before any functions are analysed.

 Page 164/172

LRM 2.7 © 2008-2021 Maia EDA

A1 BUILT-IN FUNCTIONS

Built-in functions are automatically declared when they are first encountered in the source code, and so
cannot be overloaded by user-defined functions. The function name otherwise has no special
significance:

void main() {

 int seed = 1, lo = -2, hi = +2;

 report("rand() is %d\n", rand(seed,lo,hi)); // prints: rand() is -2

 int rand = 4;

 report("rand is %d\n", rand); // prints: rand is 4

}

Example 120

A1.1 int rand(int &seed, int lo, int hi)

Description

The rand function computes a sequence of pseudo-random numbers in the closed interval [lo,hi]. If

lo is greater than or equal to hi, the function returns lo. The seed parameter is modified by the

function, and so must be an lvalue.

Returns

The rand function returns a pseudo-random integer.

A1.2 int rand(int &seed)

Description

The rand function, with a single parameter, computes a sequence of pseudo-random numbers in the
closed interval [-231,231-1]. The function is otherwise identical to rand (A1.1).

Returns

The rand function returns a pseudo-random integer.

 Page 165/172

LRM 2.7 © 2008-2021 Maia EDA

A2 PROGRAM EXIT CODE

A Maia program will return an integer value on completion if main has been declared with an int

return type. In this case, a value may be returned by:

• Returning from main with a value (return 10, for example);

• Completing main without executing a return statement, in which case the current value of

result is returned. result has a default value of 0 for functions which return int;

• Executing an exit statement with a value (exit(10), for example). It is illegal to call exit

without a value if main is declared to return an int.

Otherwise, main must be declared with a void return type. In this case, it is illegal to return a value

from main, and exit must be called without a parameter.

The value, if any, returned by the program is not returned to the operating environment. A Maia
program is executed on a simulator. If the simulator is a Verilog simulator, Maia terminates the
testbench in the normal manner, by calling $finish (the optional argument is supplied as 0, which

means ‘print nothing’). The simulator will then terminate and return a value to the operating
environment, but this value is not under the control of the testbench: the simulator will normally return
0 if it completed its own internal operation without error, and a non-zero value otherwise1. Even if it
was possible to return a value directly to the environment, that value is restricted to an 8-bit unsigned
integer on most Linux systems (or 32-bit signed on Windows).

The value returned by main is therefore added to the simulation output, as message L102, to avoid

these issues. The default L102 message is "Test completed with exit code n"2. The user can parse the
log file to find this message, and retrieve the integer exit code, if necessary.

1 SystemVerilog adds a $fatal system task, which “shall generate a run-time fatal error, which terminates the simulation with

an error code”. Although this implies the return of an error code to the environment, there is no way to set that error code.

2 Message L102 can be changed as required by modifying it in the i18n.txt internationalisation file.

 Page 166/172

LRM 2.7 © 2008-2021 Maia EDA

A3 GLOSSARY

Aggregate object A compound object which is a collection of scalar objects. If the scalar objects
are all of the same type then the collection is homogeneous (an array);
otherwise, the collection is heterogenous (a structure).

Arithmetic object Any object of an arithmetic type.

Arithmetic type A type which supports arithmetic operations: int, bit, and var. If

_StrictChecking is less than 2, bool is a synonym for bit1, and so is also

an arithmetic type.

Assignment Compatible Objects lhs and rhs are assignment-compatible if the expression lhs=rhs is
allowable.

Associativity Operator associativity determines the order in which the sub-expressions in a
full expression are evaluated, when the operators have the same precedence. In
the expression a=b*c/d, for example, * and / have the same precedence, and

associate left-to-right; the expression is therefore evaluated as a=(b*c)/d.

Bit A unit of data storage sufficient to hold a bit1 or var1 object. A bit1 may

take on one of the values 0 or 1; a var1 may take on one of the values 0, 1, X,

or Z.

Constant A lexical element which represents a numeric or boolean value. A constant is not
an object. In some circumstances, however, the compiler can be considered to
create a temporary object which is initialised with the value of the constant.

Constant expression An arithmetic expression which can be evaluated during compilation; any
combination of constants and operators. With few exceptions, a constant
expression can be used wherever a constant is required in the syntax.

Data object Any object of a data type.

Data type A type which can be considered to hold 'data': the arithmetic types, bool, and

kmap.

Declaration A declaration specifies the interpretation given to an identifier; a declaration
that also reserves storage is a definition. A type (structure or stream)
declaration does not create storage for a new object; it simply tells the compiler
how much storage will be required, should an object of that type be defined.

Definition A declaration which reserves storage and creates an object.

Field See member

FET First Event Time; the time at which the first event occurs in the event queue
that makes up a single clock cycle (10.8)

ivar object Any object of an int, bit, or var type

 Page 167/172

LRM 2.7 © 2008-2021 Maia EDA

LHS Left hand side

lvalue A writeable object; the LHS, or destination, of an assignment

Member An entity (member, or field) inside a structure or stream; see also tag

Object A region of data storage, which may be readable, writeable, or both. If the
object is readable, it yields a value when read. Every object has an associated
type, which determines the interpretation of the value stored in the object, and
the operations allowed on that object.

OP Operating point

Precedence Operator precedence determines the order in which the sub-expressions in a full

expression are evaluated. In the expression a=b+c*d, for example, * has a

higher precedence than +, and the expression is therefore evaluated as

a=b+(c*d). See also associativity.

Rank The rank of an expression or object is defined as its dimensionality. If a is a 3-

dimensional array, for example, it has rank 3. The expression a[i] has rank 2;

the expression a[i][j] has rank 1; and the expression a[i][j][k] has rank

0. Any scalar object has rank 0.

Reference A reference is an alternative name, or alias, for an object. An object has a single
primary name, but may have any number of additional aliases for that name

RHS Right hand side

rvalue A readable object or expression; the right-hand-side of an assignment

Scalar An object which is not an array. The term scalar, as used here, relates to
dimensionality (a scalar has rank 0), and not to whether or not an object is an
aggregate; a single structure, for example, is a scalar

Scope For an object which has an identifier, the scope of that identifier is the region of

the source code in which the identifier may be used to access that object

Tag The name associated with a structure or stream declaration; for example, this
declaration has the tag a, and has one member, b:

 struct a { int b; }

Tick A single time step during execution of a discrete event simulator. If the simulator
is running with a minimum precision of 1ns, for example, then it will carry out
simulation activity at 1ns, and then advance time by 1ns, and repeat. In practice,
time is actually advanced to the next multiple of 1ns at which future activity is
scheduled

void expression A void expression has no value (a call of a function which has been declared to
be of type void, for example). If an expression of any other type is evaluated as

a void expression, its result is discarded; in this case, the expression is evaluated
solely for its side-effects.

 Page 168/172

LRM 2.7 © 2008-2021 Maia EDA

A4 MTV

This Appendix documents features and issues which are specific to mtv, or the current implementation
of mtv or a specific code generator, but which are not part of the language specification.

A4.1 Preprocessor

A number of macro names are predefined, and are listed in Table 26 above. Macros may be defined or
cancelled on the mtv (or rtv) command line, with these switches:

-D NAME Predefine NAME as a macro, with definition '1'

-D NAME=DEFINITION Predefine NAME as a macro, with definition DEFINITION

-U NAME Cancel any previous definition of NAME, either built-in or provided with a

–D option

The –D and –U options are processed in the order in which they appear on the command line. The

MTV_CPPOPTIONS environment variable may also be used to provide additional options to the

preprocessor. This environment variable is processed before any additional –D or –U options.

The target language is set by mtv's –target option, or by the suffix of the output file; it is not

overridden by the __VHDL_TARGET__ and __VERILOG_TARGET__ macros, which should not normally

be changed.

mtv does not directly accept a –I switch to specify include file directories. This switch should instead

be specified in the CPP_OPTIONS environment variable.

A4.2 Environment variables

Table 27 lists the environment variables which are understood by mtv. The compiler may not function
(or may appear not to function) if these variables are incorrectly set; they should be checked after
installation.

Variable name Default Function

MTV_PPENABLE 1 Enable (1) or disable (0) the preprocessor stage

MTV_KEEPCPP 0 The preprocessor output may be retained by setting MTV_KEEPCPP

to 1. The output will be in a temporary file with an 'mtv_' prefix,
either in the current directory, or a system-defined temporary
directory.

MTV_CPPOPTIONS Unset This string is appended to the cpp command line; it may be used to
pass any macro definitions to the preprocessor.

MTV_INPUT_FILE test.tv The name of the top-level input file; this variable is ignored if mtv is
invoked with the '-i' switch

MTV_OUTPUT_FILE test.v The name of the testbench output file; this variable is ignored if mtv

is invoked with the '-o' switch

 Page 169/172

LRM 2.7 © 2008-2021 Maia EDA

MTV_COPY_STDOUT 1 If set, the compiler and testbench output is copied to 'stdout', as

well as being written to the logfile. Set to 0 to disable.

MTV_LOGFILE mtv.log The name of the compiler and testbench logging file

Table 27: mtv environment variables

rtv, the compiler driver, also requires a number of environment variables. These variables have no
default values; they must be set to valid values during installation. These variables are listed in Table
28.

Variable name Default Function

RTV_CONFIG The full pathname of the rtv configuration file

RTV_SIMULATOR The name of the required simulator. This name refers to an entry in
the configuration file

MAIA_COMPILER The mtv executable invoked by rtv

Table 28: rtv environment variables

A4.3 Compiler logging

All output from mtv, and from a running testbench, is written to a logfile. The output may also
optionally be displayed on stdout. Logging is controlled by a number of environment variables; see, in
particular, MTV_COPY_STDOUT, and MTV_LOGFILE. These variables should only be changed if

necessary; the compiler may appear not to function if logging is disabled.

A4.4 Sizing iterations

mtv must determine the maximum possible size of any unconstrained formals or function return values.
In general, this involves running a sizing pass which analyses chains of assignments to unconstrained
objects. Almost all programs will complete this sizing within a single iteration, but in some complex
circumstances multiple iterations will be required. mtv defaults to a maximum of 10 iterations before
reporting an error (E191). The maximum number of iterations may alternatively be set with mtv's –si

switch. '-si 20', for example, sets the maximum number of iterations to 20.

If sizing does not complete within the default number of iterations it is likely that the user code
contains an erroneous loop involving a cycle of chained unconstrained objects.

A4.5 Assertion and runtime failures

The –rte n switch sets the maximum run-time error count to n. The HDL code will terminate when

this count is reached. Run-time errors occur for conditions such as out-of-range array accesses and
assertion failures, but do not include DUT failures. The default value of n is 1; in other words, a

program will, by default, terminate when it encounters any assertion or run-time error.

 Page 170/172

LRM 2.7 © 2008-2021 Maia EDA

A4.6 DUT failures

The –fail n switch sets the maximum DUT failure count to n. The HDL code will terminate when

this count is reached. A DUT failure is defined as any failure of the DUT to match an output expected
from a drive statement; it is not a program error. The default value of n is 20.

A4.7 Verilog code generator limitations

mtv's Verilog code generator1 has a number of limitations, which are described below. The compiler will

issue a warning or an error when it detects these conditions, unless noted otherwise.

A4.7.1 Floating-point operations

All the floating-point operations are supported for expressions which can be statically evaluated.
However, Verilog supports only a 64-bit floating type, while Maia supports three of the IEC 60559
types. Any Maia expression which requires runtime evaluation, and which cannot be fully evaluated
using the Verilog 64-bit type, will be reported as an error during compilation.

A4.7.2 report statements

Verilog simulators have widely differing support for width and precision specifications. Both are required
to be supported for floating-point conversions, but the standard says nothing about the remaining
conversions. '%6d', for example, correctly produces an integer in a 6-character field for two popular

simulators, but produces garbled output on a third. Maia produces a warning rather than an error when
it detects this condition; you will have to check whether the output produced by your simulator is
acceptable, and modify the code if not.

Individual Verilog simulators also have widely differing support for the underlying $write system task,

so report statements with complex formatting requirements are likely to display differently on different
simulators. No error or warning messages are generated if the output does not conform to the report

specification.

A4.7.3 Mode 2 stream conversion specifications

Mode 2 stream conversion specifications (3.7.11.2.3) cannot be fully supported, because of the
limitations of the underlying $write system task; see (A4.7.2).

A4.7.4 Recursion

The Verilog code generator does not support recursive function calls2 (in other words, a Maia function
may not directly or indirectly call itself). mtv's '-cg' switch produces a call graph, which may be viewed
with graphviz; the graph can be used to analyse illegal function call sequences.

1 The code generator produces Verilog which conforms to IEEE1364-2005. This was the final LRM release for 'plain' Verilog.
No SystemVerilog code is generated.

2 While Verilog-2005 does support 'auto' functions, this support is not sufficient to allow recursive function calls, except in
simple cases.

 Page 171/172

LRM 2.7 © 2008-2021 Maia EDA

A4.7.5 Scheduling

Verilog's scheduling model is ambiguous, particularly with respect to the issue of the atomicity of
different 'processes'. The LRM doesn't explicitly state that processes should de-schedule only at defined
points, and leaves the option open for arbitrary process interleaving.

If the scheduler is implemented as defined, then it potentially has a number of undesirable effects (and
no benefits). It is unlikely, for these reasons, that any vendor actually uses an interleaved scheduling
model.

If a specific simulator does implement interleaved scheduling, then Maia is potentially affected if two or
more concurrent functions attempt to modify a shared variable at the same time. In this case, it is
possible that the shared variable will take on an incorrect value.

 Page 172/172

LRM 2.7 © 2008-2021 Maia EDA

A5 FLOATING-POINT ARITHMETIC EXAMPLE

The example program below uses the BBP formula to calculate  to 15 decimal places, which is the

best that can be represented in IEC 60559 64-bit precision (a real2). The program executes two

report statements. The first simply outputs the '' variable (which is initialised from a constant which is

correct to 16 decimal places), while the second outputs the result of the BBP calculation.

void main() {

 var64  = 3.1415926535897932;
 real2 bbp[11];

 for(int i=0; i<11; i++) {

 bbp[i] = term(i);

 if(i > 0)

 bbp[i] = bbp[i] .F+ bbp[i-1];

 }

 report("%19.16f\n", );
 report("%19.16f\n", bbp[10]);

} // main()

real2 term(int k) {

 real2 t1 = 1.0;

 for(int i=0; i<k; i++)

 t1 = 16.0 .F* t1;

 t1 = 1.0 .F/ t1;

 return

 t1 .F* (

 (4.0 .F/ ((8.0 .F* (real2)k) .F+ 1.0)) .F-

 (2.0 .F/ ((8.0 .F* (real2)k) .F+ 4.0)) .F-

 (1.0 .F/ ((8.0 .F* (real2)k) .F+ 5.0)) .F-

 (1.0 .F/ ((8.0 .F* (real2)k) .F+ 6.0)));

}

Example 121

The program output is:

 3.1415926535897931

 3.1415926535897931

	1 Introduction
	1.1 Program structure
	1.2 Syntax definition
	1.2.1 Regular expressions
	1.2.2 Line termination and whitespace

	1.3 The preprocessor

	2 Lexical conventions
	2.1 File structure
	2.2 Character set
	2.2.1 Line terminators and whitespace

	2.3 Comments
	2.4 Statement termination
	2.5 Identifiers
	2.6 Strings
	2.6.1 Escape sequences

	2.7 Constants
	2.7.1 Cinteger
	2.7.2 Vinteger
	2.7.3 Floating constants
	2.7.4 Boolean constants

	2.8 Keywords
	2.9 Predefined identifiers

	3 Concepts
	3.1 Type checking
	3.1.1 Implicit variables
	3.1.2 Function formal types
	3.1.3 Function return types
	3.1.4 Port size checking
	3.1.4.1 Port size checking exceptions

	3.1.5 Boolean type

	3.2 Declaration order
	3.3 Scope
	3.4 Namespaces
	3.5 Storage duration
	3.6 Default initialisation
	3.7 Types
	3.7.1 Introduction
	3.7.1.1 Data types
	3.7.1.2 Non-data types
	3.7.1.3 Data object indexing
	3.7.1.4 int properties
	3.7.1.5 bit and var properties

	3.7.2 Assignment compatibility
	3.7.3 ubit and uvar
	3.7.4 ivar operations
	3.7.4.1 Assignment compatibility
	3.7.4.2 Using an ivar object as a boolean
	3.7.4.3 Supported operators
	3.7.4.4 Binary operations

	3.7.5 int
	3.7.6 bit
	3.7.7 var
	3.7.7.1 var declaration
	3.7.7.2 var operations
	3.7.7.3 4-state arithmetic
	3.7.7.4 4-state comparisons
	3.7.7.5 4-state equality
	3.7.7.6 4-state logic

	3.7.8 kmap
	3.7.8.1 Assignment compatibility
	3.7.8.2 K-map operations

	3.7.9 bool
	3.7.9.1 Levels 0, 1
	3.7.9.2 Level 2

	3.7.10 struct
	3.7.10.1 Declaration and definition
	3.7.10.2 Structure assignment compatibility
	3.7.10.3 Structure operations
	3.7.10.4 Limitations

	3.7.11 stream
	3.7.11.1 Mode 1 streams
	3.7.11.1.1 Mode 1 pre-processing
	3.7.11.1.2 Mode 1 file positioning
	3.7.11.1.3 Mode 1 stream declaration
	3.7.11.1.4 Mode 1 format property
	3.7.11.1.5 Mode 1 conversions
	3.7.11.1.6 Mode 1 stream example
	3.7.11.1.7 Mode 1 'for all' operation
	3.7.11.1.8 Mode 1 stream assignment compatibility
	3.7.11.1.9 Mode 1 stream operators

	3.7.11.2 Mode 2 streams
	3.7.11.2.1 Mode 2 stream declaration
	3.7.11.2.2 Mode 2 format property
	3.7.11.2.3 Mode 2 conversions
	3.7.11.2.4 Mode 2 stream fields
	3.7.11.2.5 Mode 2 stream assignment compatibility
	3.7.11.2.6 Mode 2 stream operators

	3.7.12 array
	3.7.12.1 Array indexing
	3.7.12.2 Subscript positioning
	3.7.12.3 Comma-separated dimension lists
	3.7.12.4 Array assignment compatibility
	3.7.12.5 Array operations

	4 Operators and expressions
	4.1 Introduction
	4.2 Operator syntax
	4.3 Signed operators
	4.4 Expression evaluation
	4.4.1 sub-expression evaluation

	4.5 Operators
	4.5.1 Precedence and order of evaluation
	4.5.2 Operator equivalents
	4.5.3 Primary expressions
	4.5.4 Postfix operators
	4.5.4.1 Array subscripting
	4.5.4.2 Function calls
	4.5.4.3 Structure and stream members
	4.5.4.4 Postfix increment and decrement operators
	4.5.4.5 Bitslice operator
	4.5.4.6 Attribute operators

	4.5.5 Unary operators
	4.5.5.1 Prefix increment and decrement
	4.5.5.2 Unary arithmetic, bitwise, and logical operators

	4.5.6 Cast operators
	4.5.7 Multiplicative operators
	4.5.8 Additive operators
	4.5.9 Shift and rotate operators
	4.5.10 Relational operators
	4.5.11 Equality operators
	4.5.12 Bitwise AND operator
	4.5.13 Bitwise exclusive OR operator
	4.5.14 Bitwise inclusive OR operator
	4.5.15 Logical AND operator
	4.5.16 Logical OR operator
	4.5.17 Conditional operator
	4.5.18 Assignment operators
	4.5.19 Comma operator

	4.6 Floating-point operators and expressions
	4.6.1 Introduction
	4.6.1.1 Decimal point exception
	4.6.1.2 Floating operator exception

	4.6.2 Declarations
	4.6.3 Operators

	5 Declarations
	5.1 Introduction
	5.2 Array dimensionality
	5.3 Initialisation
	5.4 int, bit, var, and bool
	5.5 struct
	5.6 stream
	5.7 kmap
	5.8 References
	5.8.1 Reference initialisation (1)
	5.8.2 Reference initialisation (2)

	6 Statements
	6.1 Introduction
	6.2 Compound statement
	6.3 Expression and null statements
	6.4 Selection statements
	6.4.1 The if statement
	6.4.2 The if-else statement
	6.4.3 The switch statement

	6.5 Iteration statements
	6.5.1 The while statement
	6.5.2 The do statement
	6.5.3 The for statement
	6.5.4 The for all statement

	6.6 Jump statements
	6.6.1 The continue statement
	6.6.2 The break statement
	6.6.3 The return statement

	6.7 Trigger statement
	6.8 Drive statement
	6.9 Wait statement
	6.10 Exec statement
	6.11 Exit statement
	6.12 Assert statement
	6.13 Report statement
	6.13.1 Length modifiers
	6.13.2 Conversion specifiers
	6.13.3 fprintf compatibility

	7 Functions
	7.1 Introduction
	7.1.1 main

	7.2 Syntax
	7.3 Parameter passing semantics
	7.4 Function signatures
	7.5 User functions
	7.6 Thread functions
	7.7 Trigger functions
	7.8 Foreign functions
	7.9 Inter-function communication

	8 DUT section
	8.1 Introduction
	8.2 Module declaration
	8.2.1 Parameterised modules
	8.2.2 Module declaration error checking
	8.2.3 Module input, output, and inout declarations
	8.2.4 Syntax

	8.3 Drive declaration
	8.3.1 Syntax
	8.3.2 Clocked and combinatorial drive declarations
	8.3.3 Sequential and triggered drive declarations
	8.3.4 Clocked drives
	8.3.5 Mixing clocked and combinatorial signals
	8.3.6 Combinatorial drives
	8.3.6.1 Combinatorial cycle time

	8.3.7 Sequential declaration signature

	8.4 Signal declaration
	8.4.1 Syntax

	8.5 Clock declaration
	8.5.1 Syntax
	8.5.2 Period declaration
	8.5.3 Waveform declaration
	8.5.3.1 Input event timing restrictions
	8.5.3.2 Output event timing restrictions

	8.5.4 Pipeline declaration
	8.5.5 Examples

	8.6 Enable declaration
	8.6.1 Syntax
	8.6.2 Manual bidirectional control example
	8.6.3 Automatic bidirectional control example

	8.7 Timescale declaration
	8.8 Time precision and representation
	8.8.1 Floating-point values in parameter lists

	8.9 Timing constraint declaration
	8.9.1 Syntax
	8.9.2 Input constraint definition
	8.9.3 Output constraint definition
	8.9.4 Input setup and hold constraints
	8.9.5 Output hold and delay constraints
	8.9.6 Wildcard constraints
	8.9.7 Constraint conflicts
	8.9.7.1 Conflict case 1: multiple inputs
	8.9.7.2 Conflict case 2: multiple outputs with dependent inputs

	9 Drive statement
	9.1 Introduction
	9.2 Statement format
	9.2.1 Drive statements with both input and output expressions
	9.2.2 Input-only drive statements
	9.2.3 Output-only drive statements
	9.2.4 Pipelined drive statements
	9.2.4.1 The pipelined checker
	9.2.4.2 Checker flushing
	9.2.4.3 Determining the maximum checker pipeline size

	9.3 Drive directives
	9.3.1 .C
	9.3.2 .X and .Z
	9.3.3 .R
	9.3.4 Don't care conditions

	9.4 Labelled drive statements

	10 Scheduling Model
	10.1 Introduction
	10.2 Threads
	10.3 Program termination
	10.4 Advancing time
	10.5 Thread Functions
	10.6 HDL signal drivers
	10.7 Operating point
	10.7.1 DUT output testing

	10.8 Drive statement execution
	10.8.1 Delta-delay simulations

	10.9 Sequential drive statements
	10.10 Triggered drive statements
	10.11 Manual DUT testing at the operating point
	10.11.1 Input driving
	10.11.2 Output testing
	10.11.3 Summary of manual testing requirements

	11 Run-time error checking
	11.1 Run-time errors
	11.1.1 Array indexing errors
	11.1.2 Bitslice indexing errors
	11.1.3 Checker Pipeline size errors
	11.1.4 Checker Pipeline over-write errors
	11.1.5 Trigger over-run
	11.1.6 Last value pipeline errors
	11.1.7 Filesystem I/O errors

	11.2 Run-time warnings

	12 Preprocessor
	12.1 Introduction
	12.2 Preprocessor translation phases
	12.2.1 Trigraph replacement
	12.2.2 Digraph replacement
	12.2.3 Line terminator conversion
	12.2.4 Whitespace conversion
	12.2.5 UTF-8 validation
	12.2.6 Line continuation
	12.2.7 String preservation
	12.2.8 Comments
	12.2.9 Whitespace compression
	12.2.10 Directive processing
	12.2.11 Macro expansion

	12.3 Preprocessor directives
	12.3.1 Conditional inclusion directives
	12.3.1.1 Condition evaluation

	12.3.2 include directives
	12.3.3 Line directives
	12.3.4 Warning and error directives
	12.3.5 define directives
	12.3.5.1 Introduction
	12.3.5.2 Object-like macros
	12.3.5.3 Function-like macros
	12.3.5.4 Macro redefinition

	12.3.6 undef directive

	12.4 Macro expansion
	12.4.1 Self-referential macros
	12.4.2 Object-like macro expansion
	12.4.3 Function-like macro expansion
	12.4.3.1 Argument substitution
	12.4.3.2 The # operator

	12.5 Tokenisation
	12.5.1 Preprocessor Identifiers
	12.5.2 constant expression evaluation

	12.6 Predefined macro names
	12.7 Pragma directives

	A1 Built-in functions
	A1.1 int rand(int &seed, int lo, int hi)
	A1.2 int rand(int &seed)

	A2 Program exit code
	A3 Glossary
	A4 mtv
	A4.1 Preprocessor
	A4.2 Environment variables
	A4.3 Compiler logging
	A4.4 Sizing iterations
	A4.5 Assertion and runtime failures
	A4.6 DUT failures
	A4.7 Verilog code generator limitations
	A4.7.1 Floating-point operations
	A4.7.2 report statements
	A4.7.3 Mode 2 stream conversion specifications
	A4.7.4 Recursion
	A4.7.5 Scheduling

	A5 Floating-point arithmetic example

