
HDL verification with Maia

Maia is specifically designed to automate the test and
specification of HDL designs.

• C-like: no knowledge of VHDL, Verilog, or ‘verification’ required

• No low level coding (clocks, resets, signals, delays, races, etc)

• Tests can be written by software engineers, tech authors, etc, but…

• Tests will normally be written by the designers themselves in a
Test Driven Development (TDD) flow

• The test unit is an individual module: leaf or hierarchical

• The compiler generates a self-checking testbench, with error reporting

• You still need a simulator!

• The compiler driver automatically runs a batch-mode simulation of the
TB and your DUT (dual-language simulator required for VHDL designs)

• Free (beer) compiler (C++, 9-pass, Linux/Windows)

Trivial example: pipelined MAC

#define PL 3 // DUT has 3-level pipe

DUT {

 module MAC1

 @(.stages(PL))

 (input RST, CLK,

 input [3:0] A, B,

 output [9:0] Q);

 [RST, CLK, A, B] -> [Q]; // drive declaration

 create_clock CLK; // default timing, rising edge

}

main() {

 var4 ina = 0, inb = 0; // 4-bit, 4-state

 var10 sum = 0; // 10-bit, 4-state

 [1, .C, -, -] ->PL [0]; // confirm resets Ok (A,B inputs D/C)

 for(int i=0; i<16; i++, ina++)

 for(int j=0; j<16; j++, inb++) {

 sum += ina *$8 inb; // 8-bit multiplier, 4-bit inputs

 [0, .C, ina, inb] ->PL [sum]; // output is checked after PL cycles

 }

}

Simulation output (assuming correctly-code HDL!)

(Log) (2590 ns) 257 vectors executed (257 passes, 0 fails)

DUT definition: Verilog-style module
Declaration (module can be VHDL), with
sdc-style clocks, virtual clocks,
timing constraints

control language: C-like, with extensions

Maia: history (1)

Maia started life (in 1999) as a VHDL library which read test vectors from a
file and applied them to a DUT. Each line of the file contained a set of inputs,
and a set of expected outputs following a clock edge:

 [0, 1, abcd, 2345] -> [bcef0123, 45] # I/Os are hex constants

Sampled outputs were tested against the expected values. This was enough
to create simple self-checking tests, but had major limitations:

• Sequential execution with no branching/decision making ⇒

 not responsive, no ability to modify test depending on DUT state
 (drive different input values depending on a control output, etc)

• Can only drive and test against constant values ⇒

 everything must be pre-computed; all inputs and expected outputs
 must be known in advance

• No variables, expressions, functions, etc ⇒

 no algorithmic testing or independent computation of ins/outs

Maia: history (2)

There were many other issues with the VHDL test library:

• Required some VHDL coding to specify clocks, signal names, widths, etc

• Difficult to test pipelines; must code expected values later in the output
sequence, and explicitly add vectors for pipe setup/flush

• Fixed timing – only suitable for delta-delay sims

• All clocked: no combinatorial output testing

• No ability to wait for specific conditions on the DUT

• One linear flow makes the test effectively single-threaded

In principle, most of these issues can be handled with ad-hoc extensions in
the VHDL code, but this would be fragile. The solution was instead to define
a test language and write a compiler for it:

• Before: fixed testbench reads fixed test vectors from a file

• After: source code contains test spec; compiler generates testbench

• Derived from a language and compiler which were part of a SMART-
funded automated processor-verification system

• First internal release 2009; public 2019.11 release at maia-eda.net

Maia: program structure (1)

• A DUT section is used to declare the DUT and the format of any test
vectors (drive declarations), and to declare clocks/internal signals/etc

• The test code is a collection of C-like functions (with entry at main):

functions don't need to be declared, and can be entered in any order

• Hardware is tested with drive statements (or direct driving and reading
of HDL signals)

• Very simple test programs don't require a main function – can just enter

a list of drive statements

Drive declaration
• One or more drive declarations in the DUT section specify inputs to drive,

and the outputs to test after an appropriate delay

• If an input also appears in a create_clock statement then the drive

declaration is clocked/sequential; otherwise it is combinatorial

 [rst156, clk156, ready, valid, din] -> [dout, full];

• I/Os may be DUT inputs/outputs, or declared internal signals (currently
Verilog only): internal inputs are automatically preloaded (force/release)

Maia:program structure (2)

Drive statements
• Similar to the original version, but:

 [0, .C, 2*x, y, z] -> [foo(), 0x64, 2*out2()];

• Clocked drives (containing a .C) drive a specified create_clock
waveform on an input and advance time

• The signals are defined in the matching drive declaration

• Clocked drives advance time to the next operating point: other
statements (calculations, function calls, etc) then execute in zero
time, until the next drive (or wait) statement

• Incorrect outputs are logged, or stop the sim, as required

• Clocked drives set up pipelined checkers for all required tests, and
default to a test after the next clock edge

Optional pipe
Level: ->n

Inputs and outputs can
be arbitrary expressions

Special input drives:
.C clock
.R release/etc

Maia: simulation time

• Time is advanced by wait statements and drive statements

• A clocked drive advances time between operating points (OPs)

• An OP is (conceptually) the time at which clocked outputs are stable, but
before any inputs need to be driven to set up for the next clock

• You can execute any other Maia statements in between drive statements:
these occur in zero simulation time, at the OP

• For testing combinatorial circuits the compiler chooses an OP to step
through combinatorial drive statements

• Timing (clock waveforms, setup, hold, output delay) can be specified with
Primetime-compatible syntax in the DUT section

• Default (unit delay) sims have a 10ns clock, with an operating point a
little before the rising edge (eases waveform viewing)

• A large number of unit tests confirm that the compiler Verilog output is
race-free and behaves as expected on a range of simulators

Maia: control language (1)

• Simplified C look-and-feel: no pointers, no standard library

• Control statements are generally identical to C

• Full built-in C preprocessor

• Minor changes and additions: multi-level break, for all, simple file and

console I/O in language, default initialisation, left-to-right evaluation

• Major changes: drive statements, type system, references, trigger
functions, thread functions, bitslices

Type system (1)

• Both static and dynamic type checking, with configurable strength (level
0 is script-like, 1 is C-like (default), 2 is strongly typed)

• 2-state (01) and 4-state (01xz) integers with arbitrary sizes (bigint
arithmetic): bit256 is 2-state 256 bits, var102 is 4-state 102 bits, etc

• Both C and Verilog-style constants: 0xabcd, 1.4E9, 4’hx, 5’d4, etc

• int, bit, var, bool, kmap, stream, array, struct types

• Unconstrained types: ubit, uvar (size not known in advance; useful for

generic functions)

Maia: control language (2)

Type system (2)
• Data objects have no properties apart from their size: they are not

signed, unsigned, integer, floating-point, etc. They are just data

• Complexity is instead provided by operators:

- implicitly-sized unsigned integer subtraction

-# implicitly-sized signed (2’s complement) integer subtraction

-#$21 21-bit signed integer subtraction

.R<< Rotate left

.F2* Double-precision floating-point multiply

myvar.(x:y) Bitslice

• Models hardware design: memory locations just connect to function units

• This is the exact opposite of object orientation!

• An int type gives traditional signed behaviour for software convenience

(loop indexing, etc)

Maia: control language (3)

Some C code can be copied direct. This is valid C and Maia:

#ifdef __MAIA__

#define printf report // Maia has a printf-style ‘report’ statement

#else

#include <stdio.h> // C-only

#include <assert.h>

#endif

struct s1 {

 int x, y;

} a = {40+2, 42*2-42+1};

main() {

 assert(a.x == 42 && a.y == 43);

 printf("a.x: %d; a.y: %d\n", a.x, a.y);

}

Maia: streams

Simple file I/O is built into the language: optimised for reading sets of inputs
and expected outputs

//! Apply the variable plaintext known answer data, and check the results

run_vpkat() {

 stream { // stream declaration opens, reads, and checks the named file

 mode 1;

 file "vectors/des_vpkat.dat";

 format "%i %64’h %64’h", round, plain, cipher;

 } vpkat;

 ...

 for all vpkat

 passcount += drive(mode, vpkat.round, key, vpkat.plain, vpkat.cipher);

 }

} // run_vpkat()

Input file:

0 8000000000000000 95F8A5E5DD31D900

1 4000000000000000 DD7F121CA5015619

...etc

Maia: summary

• Automated unit testing for VHDL and Verilog designs

• Download from http://www.maia-eda.net

• Compiler, LRM, tutorial, FAQs, resources, scripts

• You need a Verilog-only simulator for Verilog DUTs (Icarus
v10 is free and works); or a mixed-language simulator for
VHDL DUTs (some vendors supply free dual-language
simulators)

• The mtv compiler compiles Maia sources to Verilog. The rtv
driver runs an entire batch-mode simulation (with Maia,
VHDL, and Verilog sources), using a configuration file
which describes vendor simulators

http://www.maia-eda.net/
http://www.maia-eda.net/
http://www.maia-eda.net/

