HDL verification with Maia

Maia is specifically designed to automate the test and
specification of HDL designs.

C-like: no knowledge of VHDL, Verilog, or ‘verification’ required
No low level coding (clocks, resets, signals, delays, races, etc)
Tests can be written by software engineers, tech authors, etc, but...

Tests will normally be written by the designers themselves in a
Test Driven Development (TDD) flow

The test unit is an individual module: leaf or hierarchical
The compiler generates a self-checking testbench, with error reporting
You still need a simulator!

The compiler driver automatically runs a batch-mode simulation of the
TB and your DUT (dual-language simulator required for VHDL designs)

Free (beer) compiler (C++, 9-pass, Linux/Windows)

Trivial example:

pipelined MAC

#define PL 3
DUT {
module MAC1
@ (.stages (PL))

(input RST, CLK,

input [330] A, B,

output [9:0] Q):;
[RST, CLK, A, B] == [Q]:¢

create clock CLK;
}

main () {

var4d ina = 0, inb = 0;

varlO0 sum = 0;

1, C, =, =] =>PL [0]3¢

for (int i=0; i<l6; i++, ina++)

for (int j=0; j<16; Jj++, inb++) {

sum += ina *$8 inb;
[0, .C, dina, inb] ->PL [sum];

}

// DUT has 3-level pipe

DUT definition: Verilog-style module
Declaration (module can be VHDL), with
sdc-style clocks, virtual clocks,

timing constraints

// drive declaration

// default timing, rising edge

// 4-bit, 4-state
// 10-bit, 4-state

// confirm resets Ok (A,B inputs D/C)

[control language: C-like, with extensions

)

// 8-bit multiplier,
// output is checked after PL cycles

4-bit inputs

Simulation output (assuming correctly-code HDL!)

(Log) (2590 ns)

257 vectors executed

(257 passes, 0 fails)

Maia: history (1)

Maia started life (in 1999) as a VHDL library which read test vectors from a
file and applied them to a DUT. Each line of the file contained a set of inputs,
and a set of expected outputs following a clock edge:

[0, 1, abcd, 2345] -> [bcef0123, 45] # I/0Os are hex constants

Sampled outputs were tested against the expected values. This was enough
to create simple self-checking tests, but had major limitations:

Sequential execution with no branching/decision making =

not responsive, no ability to modify test depending on DUT state
(drive different input values depending on a control output, etc)

Can only drive and test against constant values =

everything must be pre-computed; all inputs and expected outputs
must be known in advance

No variables, expressions, functions, etc =
no algorithmic testing or independent computation of ins/outs

Maia: history (2)

There were many other issues with the VHDL test library:

Required some VHDL coding to specify clocks, signal names, widths, etc

Difficult to test pipelines; must code expected values later in the output
sequence, and explicitly add vectors for pipe setup/flush

Fixed timing - only suitable for delta-delay sims

All clocked: no combinatorial output testing

No ability to wait for specific conditions on the DUT

One linear flow makes the test effectively single-threaded

In principle, most of these issues can be handled with ad-hoc extensions in
the VHDL code, but this would be fragile. The solution was instead to define
a test language and write a compiler for it:

Before: fixed testbench reads fixed test vectors from a file
After: source code contains test spec; compiler generates testbench

Derived from a language and compiler which were part of a SMART-
funded automated processor-verification system

First internal release 2009; public 2019.11 release at maia-eda.net

Maia: program structure (1)

® A DUT section is used to declare the DUT and the format of any test
vectors (drive declarations), and to declare clocks/internal signals/etc

® The test code is a collection of C-like functions (with entry at main):
functions don't need to be declared, and can be entered in any order

® Hardware is tested with drive statements (or direct driving and reading
of HDL signals)

® Very simple test programs don't require a main function - can just enter
a list of drive statements

Drive declaration

® One or more drive declarations in the DUT section specify inputs to drive,
and the outputs to test after an appropriate delay

® If an input also appears in a create clock statement then the drive
declaration is clocked/sequential; otherwise it is combinatorial

[rstlb56, clkl56, ready, valid, din] -> [dout, full];

® I/0Os may be DUT inputs/outputs, or declared internal signals (currently
Verilog only): internal inputs are automatically preloaded (force/release)

Maia:program structure (2)

Drive statements
® Similar to the original version, but:

Special input drives:

.C clock Optional pipe Inputs and outputs can
.R release/etc Level: ->n be arbitrary expressions

[0, .C, 2*x, vy, z] -> [foo(), 0Ox64, 2*out2()];

® Clocked drives (containing a .c) drive a specified create clock
waveform on an input and advance time

® The signals are defined in the matching drive declaration

® Clocked drives advance time to the next operating point: other
statements (calculations, function calls, etc) then execute in zero
time, until the next drive (or wait) statement

® Incorrect outputs are logged, or stop the sim, as required

® Clocked drives set up pipelined checkers for all required tests, and
default to a test after the next clock edge

Maia: simulation time

® Time is advanced by wait statements and drive statements
®* A clocked drive advances time between operating points (OPs)

® An OP is (conceptually) the time at which clocked outputs are stable, but
before any inputs need to be driven to set up for the next clock

® You can execute any other Maia statements in between drive statements:
these occur in zero simulation time, at the OP

® For testing combinatorial circuits the compiler chooses an OP to step
through combinatorial drive statements

®* Timing (clock waveforms, setup, hold, output delay) can be specified with
Primetime-compatible syntax in the DUT section

®* Default (unit delay) sims have a 10ns clock, with an operating point a
little before the rising edge (eases waveform viewing)

®* A large number of unit tests confirm that the compiler Verilog output is
race-free and behaves as expected on a range of simulators

Maia: control language (1)

Simplified C look-and-feel: no pointers, no standard library
Control statements are generally identical to C
Full built-in C preprocessor

Minor changes and additions: multi-level break, for all, simple file and
console I/0 in language, default initialisation, left-to-right evaluation

Major changes: drive statements, type system, references, trigger
functions, thread functions, bitslices

Type system (1)

Both static and dynamic type checking, with configurable strength (level
0 is script-like, 1 is C-like (default), 2 is strongly typed)

2-state (01) and 4-state (01xz) integers with arbitrary sizes (bigint
arithmetic): bit256 is 2-state 256 bits, var102 is 4-state 102 bits, etc
Both C and Verilog-style constants: Oxabcd, 1.4E9, 4’ hx, 5’d4, etc
int, bit, var, bool, kmap, stream, array, struct types

Unconstrained types: ubit, uvar (size not known in advance; useful for
generic functions)

Maia: control language (2)

Type system (2)

Data objects have no properties apart from their size: they are not
signed, unsigned, integer, floating-point, etc. They are just data

Complexity is instead provided by operators:
- implicitly-sized unsigned integer subtraction

-# implicitly-sized signed (2’s complement) integer subtraction
-#$21 21-bit signed integer subtraction

.R<< Rotate left

LF2% Double-precision floating-point multiply

myvar. (x:y) Bitslice

Models hardware design: memory locations just connect to function units
This is the exact opposite of object orientation!

An int type gives traditional signed behaviour for software convenience
(loop indexing, etc)

Maia: control language (3)

Some C code can be copied direct. This is valid C and Maia:

#ifdef MAIA

#define printf report // Maia has a printf-style

#else

#include <stdio.h> // C-only
#include <assert.h>

#endif

struct sl {
imE X, Vs
} a = {40+2, 42*2-42+1};

main () {

assert(a.x == 42 && a.y == 43);

printf("a.x: %d; a.y: %d\n", a.x, a.y);

Vreport’

statement

Maia: streams

Simple file I/0 is built into the language: optimised for reading sets of inputs
and expected outputs

//! Apply the variable plaintext known answer data, and check the results

run_vpkat () {
stream { // stream declaration opens, reads, and checks the named file
mode 1;

file "vectors/des vpkat.dat";
format "%i %64’'h %$64’h", round, plain, cipher;

} vpkat;

for all vpkat
passcount += drive (mode, vpkat.round, key, vpkat.plain, vpkat.cipher);

}
}// run vpkat()

Input file:

0 8000000000000000 95F8AS5ESDD31DS00
1 4000000000000000 DD7F121CA5015619

.etc

Mala: summary

®* Automated unit testing for VHDL and Verilog designs
®* Download from http://www.maia-eda.net
® Compiler, LRM, tutorial, FAQs, resources, scripts

® You need a Verilog-only simulator for Verilog DUTs (Icarus
v10 is free and works); or a mixed-language simulator for
VHDL DUTs (some vendors supply free dual-language
simulators)

® The mtv compiler compiles Maia sources to Verilog. The rtv
driver runs an entire batch-mode simulation (with Maia,
VHDL, and Verilog sources), using a configuration file
which describes vendor simulators

http://www.maia-eda.net/
http://www.maia-eda.net/
http://www.maia-eda.net/

